转自点妈文集——陪你看闪电


 

这两天又下雨了,大概梅雨要来了。

想起那天我们一起在屋檐下看闪电。晚上你邀请我去散步,我看着外面阴沉的天空有些犹豫。你笑笑:如果下雨我们就回

来,如果不下我们就出去走走。我拗不过你,和你一起出去。我已经听到风卷起雨滴的声音了,但你还是坚持要出去看看

。你抬头,伸出手,喃喃自语:“下雨了,回去吧。”说话间,一道闪电划过天空。“真亮!”你感慨道,随后隆隆得雷

声从远处压过来。你不知道,其实我是怕雷雨天的,但是因为有你在身边,一切变得那么不一样。

我转过头看你,亮晶晶的眸子,闪着光,你对我笑笑。然后问我:“妈妈,这是什么,怎么会这么亮?”爸爸抢着回答:

“闪电。”“闪电?什么是闪电?怎么会有闪电呢?”你依旧好奇,我知道你暂时无法理解正负云朵相遇时发生种种的道

理,于是我让你看着我的手,然后慢慢的用力的碰撞到一起,问你:“妈妈的两只手用力碰在一起的声音大不大?”“大

!”你很肯定。然后我跟你讲:“当天上两朵云游啊游,不小心游到一起的时候,撞到对方也会发出这么大的声音,所以

你听到了雷声,同时也会碰出一些其他东西,于是你看到了闪电。”你对这个解释很感兴趣。我又问你:“你有没有发现

有些特别。你先看到亮亮的闪电,还是先听到隆隆的雷声?”“闪电!”你很肯定。“你知道这又是为什么吗?”“妈妈

讲吧。”你对自己不知道的问题总会这么回答。“因为闪电跑的速度比雷声快啊。它跑在前面,所以我们就先看到它了。

”我看到你专注的眸子里闪着兴奋。

我知道我的解答不够专业不够权威,但我想这样你更能懂,更能理解。爸爸赶紧又说:“所以我们在下雷阵雨的时候要尽

量呆在家里。尤其不能站在树底下。”“为什么呢?”你又问。“因为这样很危险,可能会被闪电电到。”我确定你懂了

,因为这时爷爷出来了,打算去扔垃圾,你的眼神很担心,很关切:“阿爹,快进来,危险。”……

那天爸爸和我陪着你在屋檐下看闪电,听风声,雨声,雷声近半个小时。我从来没有发现,原来下雷阵雨的夜晚也能这么

让人沉醉……

转载于:https://www.cnblogs.com/oop/archive/2009/06/09/1499792.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值