二分图-匈牙利算法(dfs实现)

匈牙利算法:用增广路求二分图最大匹配的算法。

增广路的递归描述:从A出发的增广路径一定首先连向一个在原匹配中没有与点A配对的点B.

如果点B在原匹配中没有与任何点配对,则它就是这条增广路的终点,如果点B在原匹配中已经

与点C配对,那么这条增广路就是从A到B,在从B到C,在加上从点C出发的增广路径。并且这条从

C出发的增广路中不能与前半部分的增广路径有重复的点。

bool  searchPath(集合x中顶点A)
{
     for(集合Y中顶点B)
      if(AB有边连接  && B还未匹配)
     {
           标记B已经匹配
          if(B在原匹配中没有与任何点配对 || 与B配对的C存在增广路)
          {
               记录下A配对的为B
               记录下B配对的为A
                return true;
           }
     }
    return false;
 }

  

转载于:https://www.cnblogs.com/hpustudent/archive/2012/05/03/2482002.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值