DarkScope从这里开始

a learner,like Machine Learning.

排序:
默认
按更新时间
按访问量

采样方法(二)MCMC相关算法介绍及代码实现

0.引子书接前文,在采样方法(一)中我们讲到了拒绝采样、重要性采样一系列的蒙特卡洛采样方法,但这些方法在高维空间时都会遇到一些问题,因为很难找到非常合适的可采样Q分布,同时保证采样效率以及精准度。 本文将会介绍采样方法中最重要的一族算法,MCMC(Markov Chain Monte Carlo...

2017-12-30 15:32:14

阅读数:5217

评论数:0

NE(Network Embedding)论文小览

NE(Network Embedding)论文小览自从word2vec横空出世,似乎一切东西都在被embedding,今天我们要关注的这个领域是Network Embedding,也就是基于一个Graph,将节点或者边投影到低维向量空间中,再用于后续的机器学习或者数据挖掘任务,对于复杂网络来说这是...

2017-07-04 07:47:23

阅读数:21091

评论数:3

采样方法(一)

本篇文章先主要介绍一下经典的采样方法如Inverse Sampling、Rejective Sampling以及Importance Sampling和它在NLP上的应用,后面还会有一篇来尝试介绍MCMC这一组狂炫酷拽的算法。才疏学浅,行文若有误望指正。

2017-04-30 08:46:18

阅读数:15326

评论数:11

序列的算法(一·b)隐马尔可夫模型

序言….. 本系列对算法的讲解都会从两篇部分予以呈现:a. 湿货部分要浅入浅出,形象生动,读得明白。 b. 干货部分要一文以蔽之,公式罗列,看得通透;下面是(一)的 b 部分内容UnigramUnigram模型认为序列中的每一项都是独立发生的,所以很自然,假设我们有N个序列,每个序列长度是M...

2017-03-19 12:42:53

阅读数:9215

评论数:3

自动求导的二三事

知乎上看到一个回答,说是自己学习神经网络的时候都是自己对公式求导,现在常见的DL库都可以自动求导了。这个想必实现过神经网络的同学都有体会,因为神经网络的back-propagation算法本质上就是求导链式法则的堆叠,所以学习这部分的时候就是推来推去,推导对了,那算法你也就掌握了。粗粗一想,只要能...

2017-03-17 16:33:32

阅读数:9559

评论数:1

序列的算法(一·a)马尔可夫模型

序列的世界(一.a)序言机器学习领域往往按照算法的应用分为各大领域,如NLP、CV、MT等等,一些算法往往也被打上各自应用的标签,但其实对于算法本身而言,只要你能按照他指定的格式输入数据,就能够产出相应的结果,并不是限定到某个领域,只要你能对问题抽象成算法需要的input,就可以在这个问题上发挥算...

2017-03-11 14:50:29

阅读数:10833

评论数:3

维度打击,机器学习中的降维算法:ISOMAP & MDS

降维是机器学习中很有意思的一部分,很多时候它是无监督的,能够更好地刻画数据,对模型效果提升也有帮助,同时在数据可视化中也有着举足轻重的作用。一说到降维,大家第一反应总是PCA,基本上每一本讲机器学习的书都会提到PCA,而除此之外其实还有很多很有意思的降维算法,其中就包括isomap,以及isoma...

2016-11-19 13:15:28

阅读数:21707

评论数:9

从PCA和SVD的关系拾遗

从PCA和SVD的关系拾遗最近突然看到一个问题,PCA和SVD有什么关系?隐约记得自己照猫画虎实现的时候PCA的时候明明用到了SVD啊,但SVD(奇异值分解)和PCA的(特征值分解)貌似差得相当远,由此钻下去搜集了一些资料,把我的一些收获总结一下,以免以后再忘记。PCA的简单推导PCA有两种通俗易...

2016-11-13 19:38:27

阅读数:24961

评论数:19

时间复杂度最小的最短路径算法?由这个想到的

最近看书发现了一段很有意思的东西,好像是谷歌的工程师发表在谷歌黑板报里的:        有一次,我笨得忘记了该如何在一个复杂的有向图中找出两点之间的最短路径。身边的一位工程师很郑重地告诉我说:“你知道吗?解决这个问题有两种方法,聪明人的方法和笨人的方法。聪明人的方法是:照着算法教科书的讲解,...

2015-12-03 20:36:23

阅读数:13652

评论数:8

RNN以及LSTM的介绍和公式梳理

前言好久没用正儿八经地写博客了,csdn居然也有了markdown的编辑器了,最近花了不少时间看RNN以及LSTM的论文,在组内『夜校』分享过了,再在这里总结一下发出来吧,按照我讲解的思路,理解RNN以及LSTM的算法流程并推导一遍应该是没有问题的。RNN最近做出了很多非常漂亮的成果,比如Alex...

2015-07-25 16:32:32

阅读数:246383

评论数:44

地理位置信息数据可视化(DVisualMap)

地图方面数据的可视化因为在实习的时候接触到了一些GPS的数据,所以把这些数据投影出来看就是分析数据很重要的一部分了,当时用高德地图的接口就写了一个投射点的地图工具,但是非常卡,最多1000个点就动不了了,这次借机就写个地图工具,试了一下加入10000个点还能基本保持流畅,当然这个工具也不过是简单地...

2015-03-19 09:20:15

阅读数:15363

评论数:1

基于javascript的简单数据可视化:DVisual

基于html5和javascript的简单数据图表绘制,很方便地就可以得到精美的图像。 最近看了不少数据可视化的书,所以也就顺理成章想做点东西,同时准备把『数据可视化套件开发』这个作为毕业设计搞一搞,花了一两周写了一个DVisual出来,目前倒是只支持一些基本的图表绘制,后面可能会加入一些比较炫酷...

2015-02-01 11:11:17

阅读数:9616

评论数:1

理解机器学习算法的一点心得

然后用不同的方法来优化这个问题,得到尽量好的结果,给人的感觉就像是一个黑盒,实际使用中需要不断地调参实验,但倘若你能理解好算法,至少能让这个盒子透明一点,这也是机器学习算法确实需要使用者去理解算法的原因,举个例子:传统算法比如一些高效的数据结构,我只需要知道一些接口就可以使用,不需要进行太多的理解...

2014-05-10 18:08:34

阅读数:20151

评论数:7

GBDT(Gradient Boosting Decision Tree) 没有实现只有原理

阿弥陀佛,好久没写文章,实在是受不了了,特来填坑,最近实习了(ting)解(shuo)到(le)很多工业界常用的算法,诸如GBDT,CRF,topic model的一些算法等,也看了不少东西,有时间可以详细写一下,而至于实现那真的是没时间没心情再做了,等回学校了再说吧。今天我们要说的就是GBDT(...

2014-05-03 10:23:18

阅读数:121320

评论数:31

从item-base到svd再到rbm,多种Collaborative Filtering(协同过滤算法)从原理到实现

〇.说明          本文的所有代码均可在 DML 找到,欢迎点星星。 一.引入           推荐系统(主要是CF)是我在参加百度的电影推荐算法比赛的时候才临时学的,虽然没拿什么奖,但是知识却是到手了,一直想写一篇关于推荐系统的文章总结下,这次借着完善DML写一下,权当是总结了。不过...

2013-12-14 19:49:06

阅读数:55782

评论数:50

CNN(Convolutional Neural Networks)没有原理只有实现

零.说明:        本文的所有代码均可在 DML 找到,欢迎点星星。         注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入:            CNN这个模型实在是有些年份了,最近随着深度学习的兴起又开始焕发青春了...

2013-12-03 23:03:30

阅读数:22788

评论数:11

大学杂念集 随便写写

大学常思,极少为文,杂念闭胸,不舒不畅。诸君不喜勿喷。    =======================================       今天天气相当不错,本该是去图书馆坐着晒太阳看书看妹子的好日子,可惜被一个Oracle作业折腾得翻来覆去一下午,几欲抓狂,心想做DBA的人上辈...

2013-11-24 21:07:26

阅读数:10486

评论数:2

SVM --从“原理”到实现

零.         本文所有代码均能在我 github上的 DML 找到,顺便求点Star 一.引入         从一开始接触机器学习,就感觉SVM(支持向量机 Support Vector Machine)就是高端大气上档次的代名词啊,在深度学习出来之前一直都力压ANN一头,是应用得...

2013-11-23 16:42:18

阅读数:30285

评论数:4

KNN(k-nearest neighbor algorithm)--从原理到实现

零.         本文所有代码实现均可以在 DML 找到,不介意的话请大家在github里给我点个Star 一.引入  K近邻算法作为数据挖掘十大经典算法之一,其算法思想可谓是intuitive,就是从训练集里找离预测点最近的K个样本来预测分类         因为算法思想简单,你可以用很多...

2013-11-13 12:31:40

阅读数:20572

评论数:8

AdaBoost--从原理到实现

一.引入   对于Adaboost,可以说是久闻大名,据说在Deep Learning出来之前,SVM和Adaboost是效果最好的 两个算法,而Adaboost是提升树(boosting tree),所谓“提升树”就是把“弱学习算法” 二.原理 三.实现

2013-11-03 14:33:07

阅读数:170578

评论数:53

提示
确定要删除当前文章?
取消 删除
关闭
关闭