Kickstart Round B 2017——Problem B. Center(及一点延伸)

本文介绍了如何利用切比雪夫距离解决二维平面上寻找点集的最优中心点问题,该问题考虑了点的权重。讨论了两种解法,包括基于前缀和的方法和三分搜索法,并引用了相关题目和理论知识进行解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目介绍

  1. 题目链接: https://codejam.withgoogle.com/codejam/contest/11304486/dashboard#s=p1
  2. 题目大意:二维平面上有N个点,每个点的坐标为(Xi, Yi),每个点的权重为Wi,找到一个中心点(X, Y),使得max(|X-Xi|, |Y-Yi|)*Wi的和最小。N最大10000。

相关知识

  1. 先介绍一些概念性的东西(机器学习的东西不是很懂,如有错误,欢迎指出,也请见谅):

    • 切比雪夫距离、曼哈顿距离等概念这里面讲解的很清楚,附上链接: http://www.cnblogs.com/heaad/archive/2011/03/08/1977733.html
    • 机器学习中常用这些距离公式估算不同样本之间的相似性,可以依此找到聚类质心点,进行聚类。之前在师兄的论文中也看到,使用闵氏距离估算某一个特征在正负样本上的区分度,距离值越大,表明区分度越好,特征越重要。
    • 但是在实际问题中,很多样本不是单纯地距离关系,也就不能只依据距离大小进行聚类,比如本题中每个点还有权重的影响。于是,才理解本题设计的初衷:要求使用切比雪夫距离公式写一个聚类算法,找到聚类的质心
  2. 切比雪夫距离具有这样一种性质

    • 对于平面中原坐标系中两点间的 Chebyshev 距离,是将坐标轴顺(逆)时针旋转45度并将所有点的坐标值放大sqrt(2)倍所得到的新坐标系中的Manhattan距离的二分之一。通过画图可以发现,在切比雪夫坐标系下的点A(x,y),假设x>y,在曼哈顿坐标系下对应坐标为((x+y)/sqrt(2), (x-y)/sqrt(2)),则在原坐标系下点O(0,0)到A点的切比雪夫距离等于x,等于旋转后的坐标扩大sqrt(2)倍后的曼哈顿距离的二分之一,即坐标为((x+y)/2, (x-y)/2)到O点的曼哈顿距离。(刚手画了一个图,太丑了,就不放上了,稍后补上)
    • 相关链接: https://zh.wikipedia.org/wiki/%E5%88%87%E6%AF%94%E9%9B%AA%E5%A4%AB%E8%B7%9D%E7%A6%BB
  3. 曼哈顿距离和切比雪夫距离的两个基础题目

    • 相关题目:HDU 4311为典型的曼哈顿距离题目,HDU 4312则求切比雪夫距离,建议可以先拿这两个比较直观的题目练练手。此类题目有两种解法。因为两个题目的解题方法大同小异,只是4312需要将坐标转化一下,然后便可以完全按照4311的做法进行求解,这里以4311为例,题意为在n个点钟中选择某一个点(X,Y),使得到其他所有点的曼哈顿距离和最小,即sigma(|X-Xi|+|Y-Yi|)最小:
      http://acm.hdu.edu.cn/showproblem.php?pid=4311
      http://acm.hdu.edu.cn/showproblem.php?pid=4312
    • 解法一:我们可以发现在曼哈顿距离中,X轴方向的距离和Y轴方向的距离无关,且相互没有影响,故可以单独计算。即sigma(|X-Xi|+|Y-Yi|) = sigma(|X-Xi|) + sigma(|Y-Yi|),据此我们可以先按照x排序,计算以每个x值为中心时X轴方向上的距离和,然后按照y排序,计算以每个y值为中心时Y轴方向上的距离和。
      复杂度分析:排序的时间复杂度为O(nlogn)。枚举n个点,暴力计算以每个点为中心时的距离和为O(n^2),在这一步我们可以使用前缀和的方式将时间优化到O(n),故总时间复杂度为O(nlogn)。
      前缀和公式:稍微推算一下就会发现,X轴方向上排序后以第j个点作为中心点的距离和sumX[j] = sumX[j-1] + (2*j - n) * (X[j] - X[j-1]),Y轴方向上同理。
      HDU 4311代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N  = 100010;
const ll INF = LLONG_MAX;
struct Node {
    int x;
    int y;
    int id;
}node[N];

bool CmpX(Node a, Node b) {
    return a.x < b.x;
}

bool CmpY(Node a, Node  b) {
    return a.y < b.y;
}

ll sumX[N];
ll sumY[N];
int main() {
    int t;
    cin >> t;
    while(t--) {
        int n;
        cin >> n;
        for(int i = 0; i< n; i++) {
            cin>> node[i].x >> node[i].y;
            node[i].id = i;
        }
        sort(node, node + n, CmpX);
        memset(sumX, 0, sizeof(sumX));
        for(int i = 1; i< n; i++) {
            sumX[node[0].id] += (node[i].x-node[0].x);
        }
        for(int i = 1; i < n; i++) {
            sumX[node[i].id] = sumX[node[i-1].id] + (ll)(2*i-n) * (node[i].x - node[i-1].x);
        }
        sort(node, node + n, CmpY);
        memset(sumY, 0, sizeof(sumY));
        for(int i = 1; i< n; i++) {
            sumY[node[0].id] += (node[i].y-node[0].y);
        }
        for(int i = 1; i < n; i++) {
            sumY[node[i].id] = sumY[node[i-1].id] + (ll)(2*i-n) * (node[i].y - node[i-1].y);
        }
        ll ans = INF;
        for(int i = 0; i< n; ++i) {
           // cout<< sumX[i] << " "<<sumY[i]<<endl;
            ans = min(ans, sumX[i]+sumY[i]);
        }
        cout<<ans<<endl;
    }
    return 0;
}

HDU 4312代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N  = 100010;
const ll INF = LLONG_MAX;
struct Node {
    ll x;
    ll y;
    ll id;
    Node(int a=0, int b=0, int id = 0):x(a), y(b), id(id){}
}node[N];

bool CmpX(Node a, Node b) {
    return a.x < b.x;
}

bool CmpY(Node a, Node  b) {
    return a.y < b.y;
}

ll sumX[N];
ll sumY[N];
int main() {
    int t;
    cin >> t;
    while(t--) {
        int n;
        cin >> n;
        int x, y;
        for(int i = 0; i< n; i++) {
            //cin>> node[i].x >> node[i].y;
            //node[i].id = i;
            cin>>x>>y;
            node[i] = Node(x-y, x+y, i);
        }
        sort(node, node + n, CmpX);
        memset(sumX, 0, sizeof(sumX));
        for(int i = 1; i< n; i++) {
            sumX[node[0].id] += (node[i].x-node[0].x);
        }
        for(int i = 1; i < n; i++) {
            sumX[node[i].id] = sumX[node[i-1].id] + (ll)(2*i-n) * (node[i].x - node[i-1].x);
        }
        sort(node, node + n, CmpY);
        memset(sumY, 0, sizeof(sumY));
        for(int i = 1; i< n; i++) {
            sumY[node[0].id] += (node[i].y-node[0].y);
        }
        for(int i = 1; i < n; i++) {
            sumY[node[i].id] = sumY[node[i-1].id] + (ll)(2*i-n) * (node[i].y - node[i-1].y);
        }
        ll ans = INF;
        for(int i = 0; i< n; ++i) {
           // cout<< sumX[i] << " "<<sumY[i]<<endl;
            ans = min(ans, sumX[i]+sumY[i]);
        }
        cout<<ans/2<<endl;
    }
    return 0;
}


- 解法二:二分法逐渐逼近最优解(未完待续……)


本题解题思路

  1. 本题与HDU 4312的区别在于:(1)选中的中心点可以是平面中的任一点,意味着可能不是N个点中的某一个点;(2)每个点有一个权重Wi。

  2. **本题两种解法:
    (1)解法一: 前缀和,做法同HDU 4311,但是有点小区别:我们选择最小的sumX[i]值,然后选择最小的sumY[j]值,最后选择(min(sumX[i])+min(sumY[j]))的最小值即为最终结果。而HDU 4311中的(min(sumX))最终的中心点为(X,Y)
    (2)解法二:三分搜索,逼近最优解

    • 回顾一下本题的题意,max(|X-Xi|, |Y-Yi|)*Wi
    • 二分搜索和三分搜索的区别: http://blog.csdn.net/caduca/article/details/43526375
    • 二分适用于单调函数,或者导数为单调函数的函数,求导后,使用二分。三分适用于单峰函数,可以求得最值。
      http://blog.csdn.net/fjsd155/article/details/6918873 二分法作为分治中最常见的方法,适用于单调函数,逼近求解某点的值。但当函数是凸性函数时,二分法就无法适用,这时三分法就可以“大显身手”~~
    • 在求解函数f的极大极小问题时,通常使用三分。但也可以转化为求解函数f的导数g = 0的问题,此时如果g在解所在的区间内是单调的,则可以使用二分求解。

    • 在Kickstart Round A 2017的Problem C Jane’s Flower Shop,使用二分法求解。我没有证明出来是单调的,哪位大神如果知道,还望不吝赐教。师兄提供了另一种解法,牛顿法。P.S. 想说谷歌对数学的要求还真是挺高的,很多人即使题做出来了,也是知其然不知其所以然。当然,我连知其然还没做到,加油咯。

代码

解法一:前缀和。

#define _CRT_SECURE_NO_WARNINGS
//#include <bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<ctime>

using namespace std;

const int N = 50010;
double sumx[N], sumy[N];
struct Node{
    double x;
    double y;
    double w;
    int id;
    Node(double x = 0.0, double y = 0.0, double w = 0.0, int id = 0) :x(x), y(y), w(w), id(id){

    }
}node[N];

bool Cmpx(Node a, Node b) {
    return a.x < b.x;
}

bool Cmpy(Node a, Node b) {
    return a.y < b.y;
}

int main() {
    freopen("B-small-practice (2).in", "r", stdin);

    freopen("B-small-practice-my.out", "w", stdout);
    int t;
    cin >> t;
    for (int k = 1; k <= t; k++) {
        int n;
        cin >> n;
        double x, y, w;
        double rightw = 0.0;
        for (int j = 0; j<n; j++) {
            cin >> x >> y >> w;
            node[j] = Node((x - y)*0.5, (x + y) *0.5, w, j);
            //cout<<node[j].x <<" " <<node[j].y<<endl;
            rightw += w;
        }
        double righty = rightw;
        sort(node, node + n, Cmpx);
        for (int i = 0; i < n; i++) {
            sumx[i] = 0;
            sumy[i] = 0;
        }
        for (int i = 1; i< n; i++) {
            sumx[node[0].id] = sumx[node[0].id]+ (node[i].x - node[0].x) * node[i].w;
            // cout<<sumx[node[0].id]<<endl;

        }
        //cout<<sumx[node[0].id]<<endl;
        double leftw = 0.0;
        double temp = DBL_MAX;
        for (int i = 1; i < n; i++) {
            leftw += node[i - 1].w;
            rightw -= node[i - 1].w;
            sumx[node[i].id] = sumx[node[i - 1].id] + leftw * (node[i].x - node[i - 1].x) - rightw * (node[i].x - node[i - 1].x);
            //cout<<sumx[node[i].id]<<" ";
            temp = min(temp, sumx[node[i].id]);
        }
        //cout<<endl;

        sort(node, node + n, Cmpy);
        //memset(sumy, 0.0000, sizeof(sumy));
        for (int i = 1; i< n; i++) {
            sumy[node[0].id] = sumy[node[0].id]+(node[i].y - node[0].y) * node[i].w;
        }

        double lefty = 0.0;
        double tempy = DBL_MAX;
        for (int i = 1; i < n; i++) {
            lefty += node[i - 1].w;
            righty -= node[i - 1].w;
            sumy[node[i].id] = sumy[node[i - 1].id] + lefty * (node[i].y - node[i - 1].y) - righty * (node[i].y - node[i - 1].y);
            tempy = min(tempy, sumy[node[i].id]);
        }
        /*cout << temp << " && " << tempy << endl;
        double ans = sumx[0]+sumy[0];
        for (int i = 0; i < n; i++) {
            ans = min(ans, sumx[i] + sumy[i]);
        }*/
        double ans = temp + tempy;
        printf("Case #%d: %.7lf\n", k, ans);
        //cout << "Case #" << k << ": " << ans << endl;
    }
    //system("pause");
    return 0;
}

解法二:将切比雪夫距离转化成曼哈顿距离,然后分别对X,Y进行三分,X方向距离和的最小值加上Y方向距离和的最小值,即为最终解。

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <string.h>
#include <iostream>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <string>
#include <math.h>

using namespace std;
const int N = 10010;
const int LG = 100;
int n;
struct Node {
    double x;
    double y;
    double w;
    Node(double a = 0.0, double b = 0.0, double c = 0.0) :x(a), y(b), w(c){
    }
}node[N];

double Calc(double p, int flag) {
    double ans = 0.0;
    if (flag == 1){
        for (int i = 0; i< n; i++) {
            ans += abs((node[i].x - p))*node[i].w;
        }
    }
    else {
        for (int i = 0; i< n; i++) {
            ans += abs((node[i].y - p))*node[i].w;
        }
    }
    return ans;
}

double Search(double l, double r, int flag) {
    double ans = min(Calc(l, flag), Calc(r, flag));
    for (int i = 0; i< LG; i++) {
        double mid1 = (l + l + r) / 3;
        double mid2 = (l + r + r) / 3;
        double res1 = Calc(mid1, flag);
        double res2 = Calc(mid2, flag);
        if (res1 > res2) {
            l = mid1;
        }
        else{
            r = mid2;
        }
        ans = min(ans, min(res1, res2));
    }
    return ans;
}

int main() {

    freopen("B-large-practice.in", "r", stdin);
    freopen("B-large-practice-my.out", "w", stdout);
    int t;
    cin >> t;
    for (int i = 1; i <= t; i++) {
        cin >> n;
        double x, y, w;

        double minx = DBL_MAX;
        double maxx = 0.0;
        double miny = DBL_MAX;
        double maxy = 0.0;
        for (int j = 0; j < n; j++) {
            cin >> x >> y >> w;
            node[j] = Node((x + y) / 2, (x - y) / 2, w);
            minx = min(minx, node[j].x);
            miny = min(miny, node[j].y);
            maxx = max(maxx, node[j].x);
            maxy = max(maxy, node[j].y);
        }
        double result = Search(minx, maxx, 1) + Search(miny, maxy, 0);
        //cout<<"Case #"<<i<<": " <<result<<endl;
        printf("Case #%d: %.6lf\n", i, result);


    }
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值