求树的直径
树的直径是指树的最长简单路。求法: 两遍BFS :先任选一个起点BFS找到最长路的终点,再从终点进行BFS,则第二次BFS找到的最长路即为树的直径;
原理: 设起点为u,第一次BFS找到的终点v一定是树的直径的一个端点
证明: 1) 如果u 是直径上的点,则v显然是直径的终点(因为如果v不是的话,则必定存在另一个点w使得u到w的距离更长,则于BFS找到了v矛盾)
2) 如果u不是直径上的点,则u到v必然于树的直径相交(反证),那么交点到v 必然就是直径的后半段了所以v一定是直径的一个端点,所以从v进行BFS得到的一定是直径长度
(引用http://beyrens.blog.163.com/blog/static/9589445220109885810528/)
//9116963 NKHelloWorld 1383 Accepted 2552K 641MS G++ 1652B 2011-08-09 14:35:18
//7007#9116978 helloworld 1383 Accepted 2184K 641MS C++ 1697B 2011-08-09 14:36:09
//经修改后:时间变为:
//9119386 NKHelloWorld 1383 Accepted 2188K 516MS C++ 1967B 2011-08-09 17:57:12
//修改内容有:将visit从bfs中移出,变为全局变量,节省80ms;少调用que.front(),节省40ms,将memset改为修改一圈边框,节约20ms
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
int T,C,R,ptr,ptc;
bool visit[1010][1010];
char map[1010][1010];
int movement[4][2] =
{
-1,0,0,1,1,0,0,-1
};
struct NODE
{
int r,c,step;
};
int bfs(int r,int c)
{
int ans = 0,i;
memset(visit,false,sizeof(visit));
NODE now,temp;
now.r = r; now.c = c; now.step = 1;
visit[now.r][now.c] = true;
queue<NODE> que;
que.push(now);
while(!que.empty())
{
temp = que.front();
ans = temp.step;
for(i=0;i<4;i++)
{
now.r = temp.r + movement[i][0];
now.c = temp.c + movement[i][1];
if(map[now.r][now.c]=='.' && visit[now.r][now.c]==false)
{
now.step = temp.step + 1;
ptr = now.r;
ptc = now.c;
visit[now.r][now.c] = true;
que.push(now);
}
}
que.pop();
}
return ans - 1;
}
int main()
{
int i,j,finalans;
scanf("%d",&T);
while(T-- > 0)
{
finalans = 0;
scanf("%d%d",&C,&R);
//memset(map,'#',sizeof(map));
for(i=0;i<=R+1;i++)
map[i][0] = map[i][C+1] = '#';
for(j=0;j<=C+1;j++)
map[0][j] = map[R+1][j] = '#';
for(i=1;i<=R;i++)
scanf("%s",&map[i][1]);
for(i=1;i<=R;i++)
{
for(j=1;j<=C;j++)
{
if(map[i][j]=='.')
{
bfs(i,j);
printf("Maximum rope length is %d.\n",bfs(ptr,ptc));
break;
}
}
if(j<=C)
break;
}
}
return 0;
}