9.回归中的相关度和决定系数

博客探讨了在回归分析中如何衡量特征与结果的相关性。皮尔逊相关系数用于度量两个变量间的线性相关性,值在-1到1之间,0表示无线性相关。决定系数(R平方)则表示自变量能解释因变量变异的比例,修正决定系数考虑了自变量数量的影响,防止过拟合。
摘要由CSDN通过智能技术生成

起步

训练集中可能有若干维度的特征。但有时并不是所有特征都是有用的,有的特征其实和结果并没有关系。因此需要一个能衡量自变量和因变量之间的相关度。

皮尔逊相关系数

皮尔逊相关系数( Pearson correlation coefficient),是用于度量两个变量 X 和 Y 之间的相关(线性相关),其值介于 -1 与 1 之间。

在说皮尔逊相关系数之前,要先理解协方差( Covariance ) ,协方差是一个反映两个随机变量相关程度的指标,如果一个变量跟随着另一个变量同时变大或者变小,那么这两个变量的协方差就是正值,反之相反,公式如下:

相关度越高,皮尔逊相关系数其值趋于 1 或 -1 (趋于1表示它们呈正相关, 趋于 -1 表示它们呈负相关);如果相关系数等于0,表明它们之间不存在线性相关关系。

 对应的python实现<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值