洛谷 P3384 【模板】树链剖分
题目描述
如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作:
操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z
操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和
操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z
操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和
输入格式
第一行包含4个正整数N、M、R、P,分别表示树的结点个数、操作个数、根节点序号和取模数(即所有的输出结果均对此取模)。
接下来一行包含N个非负整数,分别依次表示各个节点上初始的数值。
接下来N-1行每行包含两个整数x、y,表示点x和点y之间连有一条边(保证无环且连通)
接下来M行每行包含若干个正整数,每行表示一个操作,格式如下:
操作1: 1 x y z
操作2: 2 x y
操作3: 3 x z
操作4: 4 x
输出格式
输出包含若干行,分别依次表示每个操作2或操作4所得的结果(对P取模)
输入输出样例
输入 #1复制
输出 #1复制
说明/提示
时空限制:1s,128M
数据规模:
对于30%的数据: N \leq 10, M \leq 10N≤10,M≤10
对于70%的数据: N \leq {10}^3, M \leq {10}^3N≤103,M≤103
对于100%的数据: N \leq {10}^5, M \leq {10}^5N≤105,M≤105
( 其实,纯随机生成的树LCA+暴力是能过的,可是,你觉得可能是纯随机的么233 )
样例说明:
树的结构如下:
各个操作如下:
故输出应依次为2、21(重要的事情说三遍:记得取模)
题解:
树链剖分的模板题。
关于树链剖分的讲解请参考此博客:
附上代码:
#include<cstdio>
#include<algorithm>
#define lson pos<<1
#define rson pos<<1|1
using namespace std;
const int maxn=1e5+1;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int read()
{
int x=0,f=1;
char ch=nc();
while(ch<'0'){if(ch=='-')f=-1;ch=nc();}
while(ch>='0') x=x*10+ch-'0',ch=nc();
return x*f;
}
int n,m,root,mod,tot,cnt;
int a[maxn];
int head[maxn],nxt[maxn<<1],to[maxn<<1];
int deep[maxn],fa[maxn],size[maxn],son[maxn];
int top[maxn],id[maxn],w[maxn];
int tree[maxn<<2],lazy[maxn<<2];
void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void dfs1(int x,int f)
{
fa[x]=f;
deep[x]=deep[f]+1;
size[x]=1;
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(y==f)
continue;
dfs1(y,x);
size[x]+=size[y];
if(!son[x]||size[y]>size[son[x]])
son[x]=y;
}
}
void dfs2(int x,int t)
{
id[x]=++cnt;
w[cnt]=a[x];
top[x]=t;
if(!son[x])
return;
dfs2(son[x],t);
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(y==fa[x]||y==son[x])
continue;
dfs2(y,y);
}
}
void build(int pos,int l,int r)
{
int mid=(l+r)>>1;
if(l==r)
{
tree[pos]=w[l]%mod;
return;
}
build(lson,l,mid);
build(rson,mid+1,r);
tree[pos]=(tree[lson]+tree[rson])%mod;
}
void mark(int pos,int l,int r,int k)
{
tree[pos]+=(r-l+1)*k;
tree[pos]%=mod;
lazy[pos]+=k;
lazy[pos]%=mod;
}
void pushdown(int pos,int l,int r)
{
int mid=(l+r)>>1;
mark(lson,l,mid,lazy[pos]);
mark(rson,mid+1,r,lazy[pos]);
lazy[pos]=0;
}
void update(int pos,int l,int r,int x,int y,int k)
{
int mid=(l+r)>>1;
if(x<=l && r<=y)
{
mark(pos,l,r,k);
return;
}
pushdown(pos,l,r);
if(x<=mid)
update(lson,l,mid,x,y,k);
if(y>mid)
update(rson,mid+1,r,x,y,k);
tree[pos]=(tree[lson]+tree[rson])%mod;
}
int query(int pos,int l,int r,int x,int y)
{
int mid=(l+r)>>1;
int ret=0;
if(x<=l && r<=y)
{
tree[pos]%=mod;
return tree[pos];
}
pushdown(pos,l,r);
if(x<=mid)
(ret+=query(lson,l,mid,x,y))%=mod;
if(y>mid)
(ret+=query(rson,mid+1,r,x,y))%=mod;
return ret;
}
void upd_chain(int x,int y,int k)
{
while(top[x]!=top[y])
{
if(deep[top[x]]<deep[top[y]])
swap(x,y);
update(1,1,n,id[top[x]],id[x],k);
x=fa[top[x]];
}
if(deep[x]<deep[y])
swap(x,y);
update(1,1,n,id[y],id[x],k);
}
int q_chain(int x,int y)
{
int ret=0;
while(top[x]!=top[y])
{
if(deep[top[x]]<deep[top[y]])
swap(x,y);
(ret+=query(1,1,n,id[top[x]],id[x]))%=mod;
x=fa[top[x]];
}
if(deep[x]<deep[y])
swap(x,y);
(ret+=query(1,1,n,id[y],id[x]))%=mod;
return ret;
}
void upd_subtree(int x,int k)
{
update(1,1,n,id[x],id[x]+size[x]-1,k);
}
int q_subtree(int x)
{
return query(1,1,n,id[x],id[x]+size[x]-1);
}
int main()
{
n=read();m=read();root=read();mod=read();
for(int i=1;i<=n;i++)
a[i]=read();
for(int i=1;i<n;i++)
{
int x,y;
x=read();y=read();
add(x,y);
add(y,x);
}
dfs1(root,0);
dfs2(root,root);
build(1,1,n);
while(m--)
{
int k,x,y,z;
k=read();
if(k==1)
{
x=read();y=read();z=read();
upd_chain(x,y,z);
}
else if(k==2)
{
x=read();y=read();
printf("%d\n",q_chain(x,y));
}
else if(k==3)
{
x=read();z=read();
upd_subtree(x,z);
}
else
{
x=read();
printf("%d\n",q_subtree(x));
}
}
return 0;
}