自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(93)
  • 收藏
  • 关注

原创 深度学习调参笔记

就是因为增加了下面这个代码片段,使得训练过程耗时增加了3倍。。。注释掉这段代码导致训练时间缩短了2/3的主要原因与和这两个选项有关。

2024-06-21 18:16:56 412

原创 计算机视觉中,数据增强和扩充数据集规模的区别是什么?

数据增强:通过对现有数据进行变换,增加数据的多样性和泛化能力。扩充数据集样本规模:通过收集或生成新数据,增加数据集的样本数量,提高模型的训练效果。通过理解这两者的区别和结合使用,你可以更有效地提高语义分割模型的性能。如果有任何进一步的问题或需要更多帮助,请随时告诉我。

2024-06-19 16:44:29 528

原创 mmsegmentation使用记录

原因,MMCV版本不匹配。

2024-06-15 18:42:46 160

原创 WINDOWS安装eiseg遇到的问题和解决方法

原因是 opencv-python 版本不匹配。降级 opencv-python 版本。解决办法,执行这个命令。

2024-06-14 16:17:48 351

原创 语义分割的数据集各式

比较经典的2种。

2024-06-14 16:13:25 386

原创 如何理解分类任务中的logits?

通过在类别通道维度上应用 argmax 操作,可以找到概率最大的类别,并将该类别的索引作为该像素点的最终预测结果。总结来说,argmax 在类别通道维度上应用,以便为每个像素点找到概率最大的类别,从而生成最终的语义分割图。这是实现语义分割的关键步骤,因为它将每个像素点的类别概率分布转换为具体的类别标签。argmax 会选择每个像素点的概率向量中最大的元素的索引,表示该像素点的预测类别。是模型输出的原始分数,通常是在通过模型的最后一个全连接层之后但在激活函数(如 softmax)之前获得的。

2024-06-13 19:03:19 547

原创 迁移学习和从头训练(from scratch)的区别

你利用在大规模数据集(ImageNet)上预训练好的模型权重,然后在你的特定任务(你自己的数据集)上进行微调。这种方法通常可以加快训练速度,并且因为模型已经学习到了很多通用特征,可能会提高性能。这是一种从头开始(scratch)训练模型的方法,所有的权重都是随机初始化的,然后在你的数据集上进行训练。例如对于图像分类任务,有自己的数据集,打算利用 resnet 来实现,有2种实现方式,那么这两种情况,第一种方式属于使用迁移学习,第二种不属于迁移学习。总结:第一种方式是迁移学习,第二种方式不是迁移学习。

2024-06-12 16:51:52 316

原创 pytorch中,load_state_dict和torch.load的区别?

torch.load用于从磁盘加载任意对象(通常是状态字典)。用于将加载的状态字典应用到模型或优化器实例上。# 定义模型# 创建模型和优化器# 保存模型和优化器的状态字典# 加载模型和优化器的状态字典这段代码展示了如何定义一个简单的模型,保存它的状态字典,然后加载这些状态字典到新的模型和优化器实例中。

2024-06-12 10:30:19 570

原创 深度学习中,sigmoid和softmax生成注意力权重的区别是什么?

具体使用哪个函数,取决于你的模型和任务需求。如果需要生成独立的注意力权重,可以使用sigmoid;如果需要分配整体注意力到各个输入,使用softmax更为合适。

2024-06-11 15:07:56 414

原创 关于torch.size和tensor的维度笔记

和是两个不同形状的张量 (tensor) 大小。​a1​a2​⋮a200​​​a1​a2​a200​在使用过程中,它们的主要区别在于数据的存储和处理方式。保留了二维结构的信息,而则是完全扁平化的一维结构。

2024-05-30 15:07:19 872

原创 COD论文笔记 CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion Models_AAAI_2024

通过利用扩散模型的随机采样过程,CamoDiffusion模型能够生成多种可能的预测结果,这有助于捕捉和反映边界区域的预测不确定性,从而避免传统方法中因过于自信的点估计所导致的错误,提高伪装物体检测的准确性和可靠性。这篇论文提出了一种名为CamoDiffusion的方法,用于检测伪装的物体。CamoDiffusion方法利用了一种叫做“扩散模型”的先进技术,来逐步改进和生成伪装物体的检测结果。这种方法通过添加和去除噪声,逐步从初始的粗略预测变成精确的结果。

2024-05-30 10:52:00 815

原创 COD论文笔记VSCode: General Visual Salient and Camouflaged Object Detection with 2D Prompt Learning

VSCode模型通过引入领域特定提示和任务特定提示,结合提示区分损失,成功地在单一模型中处理多个显著目标检测和伪装目标检测任务。这种方法不仅提高了模型的性能,还展示了其对未见任务的泛化能力。作者使用 Visual saliency transformer ICCV 2021 作为baseline model这张图展示了VSCode模型的整体框架,特别强调了2D提示学习方法。

2024-05-29 17:16:17 707

原创 论文笔记 Explicit Visual Prompting for Low-Level Structure Segmentations

想象一下,你有一个已经接受过大量训练的超级助手(类似于预训练的模型),这个助手已经学习了大量关于图像的知识,但现在你需要让它快速适应并执行一些特定的任务,比如识别模糊区域、找到阴影、检测伪造的图像部分或者发现伪装的物体。视觉中的提示(prompt)是一种通过添加少量的额外信息或指导,让已经训练好的模型在不需要重新训练的情况下,高效地适应和完成特定任务的方法。这样既利用了预训练模型的强大能力,又能灵活地处理不同的视觉任务。隐式提示:通过间接的方法让模型自己去发现和适应重要特征,效率较低,过程像是黑盒操作。

2024-05-29 17:12:40 1139

原创 COD论文笔记 CamoFocus: Enhancing Camouflage Object Detection With Split-Feature Focal Modulation

这篇论文提出了一种名为CamoFocus的新方法,用于检测伪装在背景中的物体。CamoFocus通过两个关键组件(特征分割和调制模块FSM,以及上下文细化模块CRM)来改进伪装物体的检测。CamoFocus是一种新颖且高效的伪装物体检测方法,通过特征分割和调制模块(FSM)以及上下文细化模块(CRM)的协同作用,显著提升了检测性能。这种方法在减少计算复杂度的同时,提供了更准确的检测结果,具有广泛的应用潜力。这张配图2展示了论文中CamoFocus模型的整体架构,包括各个模块和它们的相互作用。

2024-05-29 15:19:45 809

原创 Dice损失函数

Dice损失函数通过最大化模型预测结果与真实标签的重叠部分来提高分割精度,特别适用于医学图像分割等需要高精度的小目标区域分割的场景。其公式简单直观,计算方便,同时在处理类别不平衡问题上表现出色,是图像分割任务中的常用损失函数。

2024-05-29 13:45:45 786

原创 Pytorch 笔记

就地操作会直接修改原始张量的值,通常以a.mul_(b):就地进行元素级相乘非就地操作会创建新的张量并返回结果,而不改变输入张量的值。这些不同的乘法操作方式在不同的应用场景中有不同的用途,根据需要选择适合的乘法方式。

2024-05-28 22:57:46 1036 2

原创 COD 论文笔记 A Simple yet Effective Network based on Vision Transformer for Camouflaged Object

CAMO:包含1,000张训练图像和250张测试图像。CHAMELEON:包含76张测试图像,无训练图像。COD10K:包含3,040张训练图像和2,026张测试图像。NC4K:包含4,121张测试图像,无训练图像。Paradigm 1:整个网络共享同一个编码器和解码器,结构简单,但任务间可能互相干扰。Paradigm 2:共享编码器但使用独立的解码器,能够更好地处理任务间的干扰,提高单个任务的性能。

2024-05-25 21:57:54 927

原创 Element-wise Addition和Element-wise Multiplication

对于逐元素相加操作,要求两个特征图的空间尺寸和通道数必须相同。对于逐元素相乘操作,同样要求两个特征图的空间尺寸和通道数必须相同。在神经网络中,逐元素相加通常用于将来自不同层或不同模块的特征进行合并,从而保留每个位置的特征信息。确保特征图在这两种操作中的尺寸和通道数相同是非常重要的,以保证操作的正确性和特征融合的有效性。:用于将下采样后的边缘特征与输入特征融合,或者将通道注意力权重与特征图融合,以突出重要特征。:用于将初始融合特征和输入特征相加,确保在每个位置上同时保留原始特征和融合特征的信息。

2024-05-25 21:11:31 663

原创 全局平均池化笔记

例如,在经典的卷积神经网络如ResNet中,GAP被用来替代传统的全连接层,简化了模型结构,并保持或提升了性能。这有效地减少了模型中的参数数量,相比于全连接层,它不需要额外的权重参数,从而减小了模型的复杂度和过拟合的风险。:全局平均池化对特征图的输入位置不敏感,主要关注的是特征的存在与否,而不是其具体位置。:通过对整个特征图进行平均池化,全局平均池化能够整合全局的空间信息,而不仅仅是局部的信息。:在分类任务中,GAP通过将每个类别的特征图聚合成一个数值,使得网络更直接地学习到每个类别的全局特征。

2024-05-25 21:09:06 510

原创 COD论文笔记 Boundary-Guided Camouflaged Object Detection

这张图展示了BGNet如何通过EAM模块提取边缘特征,EFM模块融合这些边缘特征,并通过CAM模块聚合多级特征,最终实现伪装物体的准确检测和分割。该方法在实验中表现出色,显著提升了伪装物体检测的性能。这篇论文的实验部分详细介绍了模型的实现、评估指标、数据集和对比方法。

2024-05-25 18:49:19 1039

原创 timm笔记

注意:返回的 PyTorch 模型默认设置为训练模式,因此如果你计划使用它进行推理,则必须在其上调用 .eval()。这个函数会通过入口函数将相关参数传递给。函数用于创建一个模型。可以创建一个只输出特征图的模型,使用。指定输出哪些层的特征。,则在传递前会被剔除。

2024-05-25 18:30:31 218

原创 论文笔记 Enhancing Camouflaged Object Detectors by Generating Camouflaged Objects, ICLR 2024.

图分为两个阶段:Phase I和Phase II,并通过交替训练的方式迭代进行。Phase I中固定检测器(Ds),训练生成器(Gc);Phase II中固定生成器(Gc),训练检测器(Ds)。这张图通过直观的流程图展示了Camouflageator框架的工作机制,说明了如何通过对抗训练生成更难以检测的伪装物体,从而提升伪装物体检测器的性能。每个阶段的具体步骤和优化过程清晰地展示了生成器和检测器的交替训练方式。Camouflageator框架。

2024-05-24 18:43:09 828

原创 论文笔记 Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions

通过以上设计,PVT不仅能够替代CNN骨干,还能在各种视觉任务中提供更好的性能,特别是在需要高分辨率和多尺度特征的任务中。通过以上贡献,PVT不仅解决了传统Transformer在密集预测任务中的困难,还在多个任务中展现出优越的性能,证明了其作为新型视觉骨干网络的潜力。PVT的设计使得其在资源消耗、灵活性和性能方面均具有显著优势。PVT模型被分为四个阶段,每个阶段由一个补丁嵌入层和若干个Transformer编码器层组成。

2024-05-24 14:01:26 964

原创 Git笔记

完成以上步骤后,您的本地项目应该已经成功上传到 GitHub 仓库中了。您可以在 GitHub 网站上查看并访问您的项目。,如果您使用的是其他分支,请将其替换为您的分支名称。这里假设您的本地分支是。

2024-05-21 22:12:28 456

原创 github中的SSH and GPG keys

在GitHub中,SSH和GPG密钥是用于提高账户和代码安全性的两种主要工具。

2024-05-21 17:35:01 377

原创 Github中fork的仓库和自己创建的仓库有什么区别?

总的来说,创建的仓库是一个全新的独立项目,而fork的仓库则是基于已有项目的一个副本,便于参与协作和开发。

2024-05-21 16:31:41 334

原创 Ubuntu中tree命令的常用参数

这个命令会显示包括隐藏文件在内的所有文件和目录,限制显示深度为2级,并且忽略所有PNG图像文件。这些参数可以单独使用,也可以组合使用,以满足不同的需求。Ubuntu中不显示所有png图像文件的tree命令。命令用于以树状结构显示目录内容。

2024-05-19 21:08:57 138

原创 什么是.gitignore文件?

gitignore文件是Git版本控制系统中的一个配置文件,用于指定哪些文件或目录应被Git忽略,不纳入版本控制。它是文本文件,可以包含各种文件名模式或路径,用来排除不需要的文件。

2024-05-19 19:12:56 543

原创 SINet(CVPR2020)复现及问题记录

我安装的是 pytorch==1.11.0版本, 通过 conda 安装 pytorch,torchvision cudatoolkit 的命令。此外,nn.functional.upsample 已被弃用,应使用 nn.functional.interpolate。然后,原始代码只在 COD10K 测试集上进行了测试,如果需要在多个测试集进行测试,修改。但是目前已经不支持该API了,这里使用 torch.cuda 的amp来实现,由于我是单卡训练,将 MyTrain.py 中原先默认的。

2024-05-19 17:39:13 471

原创 深度学习中,什么是open-set?

open-set 问题在深度学习中是一个重要的研究方向,因为它反映了许多实际应用中的现实需求。模型不仅需要对已知类别进行准确分类,还需要具备识别和处理未知类别的能力,这对于提高模型的鲁棒性和适应性至关重要。

2024-05-19 01:49:45 256

原创 伪装目标检测/分割属于语义分割还是实例分割?

camouflaged object segmentation task is class independent,也就是说,模型只区分前景和背景,前景是camouflaged object,背景是non camouflaged area,那么camouflaged object segmentation可以被认为是语义分割任务还是实例分割任务?在计算机视觉中,任务确实主要关注于将伪装物体(camouflaged object)与非伪装区域(non-camouflaged area)区分开来。

2024-05-19 01:47:57 296

原创 深度学习计算机视觉中,什么是无监督域自适应算法?

无监督域自适应(Unsupervised Domain Adaptation, UDA)算法是深度学习和计算机视觉中用于解决域间分布差异问题的一类方法。在实际应用中,训练数据(源域)和测试数据(目标域)可能来自不同的分布,这种差异会导致模型在目标域上表现不佳。无监督域自适应算法旨在减少这种分布差异,使得模型在目标域上能够更好地泛化。

2024-05-19 01:47:05 389

原创 各种类型的RGB图像总结

RGB系列图像包含了多个类型的图像,它们在传统的红、绿、蓝(RGB)颜色通道基础上添加了其他信息通道,以提供更丰富的图像数据。这些扩展的图像类型通常用于计算机视觉、图像处理和深度学习等领域。:添加了近红外(Near Infrared, NIR)通道,用于遥感和农业监测等领域。:包含热红外(Thermal Infrared)通道,用于夜视、监控和温度测量等应用。:加入了强度(Intensity)信息通道,通常用于光学成像和医学成像中。:包含透明度(Alpha)通道,用于图像合成和图像编辑。

2024-05-19 01:46:21 954

原创 PySODEvalToolkit 使用笔记

通过这些步骤,你应该能够使用PySODEvalToolkit来评估你的显著性目标分割或伪装目标分割模型的性能。如果有任何问题,请查看项目文档或在GitHub上提出问题。里对不同数据集的ground truth图像进行配置。里是模型在不同数据集上预测的mask图像进行配置。在修改完数据集配置文件和方法配置文件后,执行这个命令。文件,根据你的数据集路径和评估需求进行配置。目录包含ground truth mask图像,评估结果和可视化图表将保存在配置文件中指定的。目录包含不同方法的预测结果。

2024-05-18 16:32:58 405

原创 latex笔记

在文档开头引入ragged2e包。然后在子章节的开头添加。

2024-05-14 15:36:15 212

原创 SINetV2复现代码问题及解决方法

然后,你需要在 Res2Net_v1b.py 中修改加载模型权重的代码部分,以确保它正确地指向新的路径。然后再安装 opencv-python ,python3.6对应的 opencv-python版本为。首先安装 scikit-build。解决方法: 更新 pip 版本。

2024-05-14 00:01:37 191

原创 ubuntu怎么安装tree工具?

此时应当可以成功安装 tree 工具。首先更新系统软件源,执行如下命令。然后再执行安装tree工具的命令。然后就可以执行 tree 命令了。

2024-05-13 20:03:29 89

原创 AutoDL创建conda虚拟环境之后,无法进入的解决步骤

就可以成功进入创建的虚拟环境了。执行这个命令创建虚拟环境之后,

2024-05-13 19:36:57 144

原创 存在矛盾的题目

因此,这个问题在初始条件和边界条件之间存在矛盾。这种矛盾意味着没有满足所有这些条件的解。在现实应用中,通常需要调整条件以避免这种矛盾。对于这个问题,我们需要检查所给边界条件和初始条件是否一致,以及它们是否符合偏微分方程的基本要求。这里出现了矛盾,因为初始时刻。但根据给定的边界条件,

2024-04-26 17:42:35 440

原创 PDE2020补考题目

对于二阶偏导数的系数矩阵,只考虑形如 uttu_{tt}utt​, uxxu_{xx}uxx​, uyyu_{yy}uyy​, uzzu_{zz}uzz​, utxu_{tx}utx​, utyu_{ty}uty​, utzu_{tz}utz​, uxyu_{xy}uxy​, uxzu_{xz}uxz​, uyzu_{yz}uyz​ 的项。方程中只显示了 uttu_{tt}utt​, uxyu_{xy}uxy​ 和 uzzu_{zz}uzz​,其他项如 uxxu_{xx}uxx​, uyyu_{yy}uyy

2024-04-26 12:46:49 377

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除