自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(55)
  • 收藏
  • 关注

原创 存在矛盾的题目

因此,这个问题在初始条件和边界条件之间存在矛盾。这种矛盾意味着没有满足所有这些条件的解。在现实应用中,通常需要调整条件以避免这种矛盾。对于这个问题,我们需要检查所给边界条件和初始条件是否一致,以及它们是否符合偏微分方程的基本要求。这里出现了矛盾,因为初始时刻。但根据给定的边界条件,

2024-04-26 17:42:35 292

原创 PDE2020补考题目

对于二阶偏导数的系数矩阵,只考虑形如 uttu_{tt}utt​, uxxu_{xx}uxx​, uyyu_{yy}uyy​, uzzu_{zz}uzz​, utxu_{tx}utx​, utyu_{ty}uty​, utzu_{tz}utz​, uxyu_{xy}uxy​, uxzu_{xz}uxz​, uyzu_{yz}uyz​ 的项。方程中只显示了 uttu_{tt}utt​, uxyu_{xy}uxy​ 和 uzzu_{zz}uzz​,其他项如 uxxu_{xx}uxx​, uyyu_{yy}uyy

2024-04-26 12:46:49 324

原创 PDE选填02

最大值的取值点满足 −uxx−uyy=−1-u_{xx}-u_{yy}=-1−uxx​−uyy​=−1 的函数在单位圆上的最大值在何处取得?给定偏微分方程 −uxx−uyy=−1-u_{xx}-u_{yy}=-1−uxx​−uyy​=−1,我们可以考虑使用泊松方程的性质来解决这个问题。泊松方程的形式为 −Δu=f-\Delta u = f−Δu=f,其中 Δ\DeltaΔ 是拉普拉斯算子,对于二维情况即为 uxx+uyyu_{xx} + u_{yy}uxx​+uyy​。因此,我们的方程可以重写为 Δu=

2024-04-25 20:45:23 625

原创 PDE选填01

PDE的几个算子对比在偏微分方程中,梯度算子(Gradient)、散度算子(Divergence)和拉普拉斯算子(Laplace Operator)都是基本的微分算子,它们的阶数如下:梯度算子(∇\nabla∇):是一个一阶算子。梯度算子作用于一个标量函数 f(x,y,z)f(x, y, z)f(x,y,z),结果是一个向量,每个分量是对应坐标的一阶偏导数。散度算子(∇⋅\nabla \cdot∇⋅):也是一个一阶算子。散度算子作用于一个向量场 v⃗(x,y,z)\vec{v}(x, y, z

2024-04-25 20:44:14 894

原创 PDE求格林函数

求Green函数通俗地解释拉普拉斯方程的基本解的意义拉普拉斯方程的基本解是一个非常有用的数学概念,它帮助我们理解在某一个点施加一个非常小的影响(比如一个微小的推动、热源或电荷)时,这种影响是如何在整个空间中扩散和影响其他区域的。为了通俗地解释这个概念,我们可以考虑以下几个比喻:1. 扔石头到静止的水面想象你在一个静止的水塘里扔了一块石头。石头接触水面的那一点,就像是拉普拉斯方程中的“点源”。石头落水后,水面上会形成波纹,这些波纹向外扩散,直到消失。拉普拉斯方程的基本解,就类似于描述这种波纹从起始点向

2024-04-24 20:18:20 567

原创 偏微分方程笔记

这两个方程在物理学中有着重要的地位,它们的解决了许多自然界和工程领域中的平衡和稳态问题。拉普拉斯方程是泊松方程的一个特例,即当。

2024-04-19 22:46:27 552

原创 PDE判断题

这个说法是正确的,并且这是调和函数理论中的一个重要结论,通常称为李乌维尔定理。李乌维尔定理指出,如果一个定义在整个RnRn上的调和函数是有界的(无论是上界还是下界),那么这个函数必须是一个常数。调和函数是满足拉普拉斯方程Δu0Δu0的函数,其中Δ\DeltaΔ是拉普拉斯算子,表示为Δu∑i1n∂2u∂xi2Δu∑i1n​∂xi2​∂2u​。

2024-04-18 21:02:03 637

原创 遥感目标检测综述论文笔记 2023 Remote Sensing Object Detection Meets Deep

遥感目标检测综述论文笔记 2023 Remote Sensing Object Detection Meets Deep。

2024-04-16 22:28:14 88 1

原创 Mamba论文笔记

状态空间模型(State Space Model, SSM)是一种数学模型,它可以用来描述一个系统在时间序列上如何演化。在序列建模任务中,状态空间模型通常用来预测或分析一系列时间点上的观测数据。想象你在看一部电影,电影中的每一帧都可以看作是一个观测点,而整部电影就是一个序列。状态空间模型就好比一个导演,根据电影的情节来决定下一帧画面应该是什么样子。状态(State):在我们的电影比喻中,状态好比是隐藏在幕后的故事线,它包含了电影情节的核心信息,但观众并不能直接看到。

2024-04-15 17:40:15 796

原创 YOLOv1精读笔记

YOLO 将目标检测视为一个空间上分离的边界框(bounding boxes)和与之关联的类别概率回归问题,而非之前 two stage 算法的分类问题。单个神经网络在一次评估中直接从整张图像中预测边界框和类别概率。所以可以直接优化端到端的检测性能。

2024-04-14 23:06:25 703

原创 目标检测笔记

正样本:通常是指那些预测的边界框,它们成功地与真实标注的对象边界框有较高的交并比(IoU)。如果某个预测的边界框与任何一个真实边界框的 IoU 超过某个阈值(例如,通常使用的阈值是 0.5),那么这个预测框就被视为正样本。负样本如果预测的边界框与任何真实边界框的 IoU 很低(低于某个较低的阈值,比如 0.3 或更低),则这个预测框被视为负样本。因此,YOLO 中的“正样本”和“负样本”不是预先定义的区域或锚框,而是通过模型预测的边界框与真实边界框之间的匹配程度来动态确定的。

2024-04-13 23:52:16 1060

原创 RetinalNet论文笔记

当然,这篇论文主要研究了一种新的损失函数——焦点损失(Focal Loss),用以改进单阶段目标检测器在处理极端类别不平衡情况时的性能。实验表明,在训练密集检测器(dense detectors)时,由于遇到的大类别不平衡问题,易分类的负样本占据了交叉熵损失的大部分并主导了梯度。而权重因子ααα虽然平衡了正负样本的重要性,但它没有区分简单和困难的样本。因此,作者提出重新塑造损失函数以降低易分类样本的权重,从而更加集中于训练难分类的负样本。焦点损失通过添加一个调节因子1−ptγ1−pt。

2024-04-13 23:51:47 1113 1

原创 SPP论文笔记

这篇论文讨论了在深度卷积网络中引入空间金字塔池化(SPP)层的方法,以解决传统深度卷积网络需要固定图像尺寸的限制。以下是论文各部分的总结:论文指出现有的深度卷积神经网络(CNN)需要固定大小的输入图像,这一需求限制了图像的比例和尺度,可能会影响识别的准确性。为了解决这个问题,作者提出了一种新的网络结构——SPP-net,该网络通过空间金字塔池化层来生成固定长度的输出,使得网络可以处理任意尺寸的图像。这一部分详细介绍了空间金字塔池化(SPP)层的概念和实现。SPP层位于最后一个卷积层之后,通过不同级别的池化区

2024-04-13 23:51:39 786

原创 Attention Is All You Need

介绍了在提出Transformer模型之前,主流的序列转换模型是基于复杂的循环神经网络(RNN)或卷积神经网络(CNN),这些模型通常包含编码器(encoder)和解码器(decoder)。在性能最佳的模型中,编码器和解码器通过注意力机制(attention mechanism)连接。然而,作者提出了一种新的网络架构——Transformer,它完全基于注意力机制完全摒弃了循环和卷积操作。

2024-04-11 23:36:25 725

原创 深度学习笔记

自监督学习是一种无监督学习的方法,在计算机视觉中,它指的是利用数据本身的结构和特征来学习数据的表示,而不需要外部的标注或监督。预测任务的创建:自监督学习通过定义预测任务来利用未标记的数据。例如,在图像处理中,可以通过移除图片的一部分然后让模型预测被移除的部分来创建预测任务。这种任务迫使模型理解和学习数据的内部结构和特征。特征学习:通过这些自监督的预测任务,模型能够学习到数据的高级特征表示。这些特征可以捕获图像中的重要信息,如形状、纹理、颜色等。迁移学习:自监督学习得到的特征表示可以用于其他监督学习任务。

2024-04-11 19:14:52 378

原创 Vision Mamba 论文学习精读笔记 Efficient Visual Representation Learning with Bidirectional State Space Model

总结了论文中提出的Vision Mamba(Vim)模型的动机、设计以及其在视觉任务上的表现。首先,指出了状态空间模型(SSM)在长序列建模方面的潜力,尤其是Mamba模型在硬件效率方面的优势。纯粹基于 SSM 构建高效且通用的视觉 backbone 是一个有吸引力的方向。然后提到,尽管在视觉数据表示上存在挑战,例如视觉数据的位置敏感性和视觉理解对全局上下文的需求,但作者成功地展示了不必完全依赖自注意力机制来学习视觉表示。文章介绍了Vim模型,这是一种新的通用视觉基础模型,它利用双向Mamba块(

2024-04-11 17:33:50 758

原创 图像情感分析综述论文精读 Affective Image Content Analysis: Two Decades Review and New Perspectives

本文全面回顾近二十年来AICA的发展,特别是关注最先进的方法,涉及三个主要挑战-情感差距感知主观性标签噪声和缺失。作者首先介绍了在AICA中广泛使用的关键情感表示模型,并描述了可用的数据集,用于通过标签噪声和数据集偏差的定量比较进行评估。然后,总结和比较了以下方面的代表性方法:(1)情感特征提取,包括手工特征和深度特征;(2)主导情感识别、个性化情感预测、情感分布学习和从噪声数据或少标签中学习的学习方法;(3)基于AICA的应用。

2024-04-10 22:04:50 157

原创 Path Aggregation Network for Instance Segmentation

作者提出了路径聚合网络(PANet),旨在增强基于提议的实例分割框 (proposal-based instance segmentation framework) 中的信息流动。具体来说,通过自底向上的路径增强,加强了整个特征层次结构,使得底层的准确定位信号能够加速传播到最顶层的特征。此外,文章提出了自适应特征池化机制,它连接了特征网格和所有特征层次,使得每一层的有用信息都能直接传播到后续的提议子网络中。为了进一步改进掩模预测,还创建了一个补充分支,用以捕捉每个提议的不同视角。

2024-04-10 22:04:28 945

原创 Vision Transformer论文精读笔记 AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

核心观点:在视觉方面,注意力机制对卷积神经网络 (CNN) 的依赖是不必要的,直接应用于图像 patch 序列的纯 Transformer 可以很好地完成图像分类任务。当对大量数据进行预训练并传输到多个中型或小型图像识别基准(ImageNet, CIFAR-100, VTAB等)时,Vision Transformer (ViT)与最先进的卷积网络相比获得了出色的结果,同时需要更少的计算资源进行训练。

2024-04-10 22:03:03 315

原创 CSPNet: A New Backbone that can Enhance Learning Capability of CNN

作者提出了跨阶段部分网络(CSPNet),以缓解以往工作需从网络架构的角度进行大量推理计算的问题。作者将此问题归因于网络优化中梯度信息的重复。所提出的网络通过集成网络阶段开始和结束的特征图来尊重梯度的可变性,在作者的实验中,在ImageNet数据集上以同等甚至更高的精度减少了20%的计算量,并且在MS COCO目标检测数据集上的AP50方面显著优于 SOTA。

2024-04-10 16:14:43 400

原创 Feature Pyramid Networks for object detection

这种选择是很自然的,因为每个阶段的最深层应该拥有最强大的功能。具体而言,对于。

2024-04-09 22:08:15 784

原创 SE注意力模块学习笔记《Squeeze-and-Excitation Networks》

卷积神经网络建立在卷积运算的基础上,通过在局部感受野内融合空间信息和通道信息来提取信息特征。为了提高网络的表示能力,最近的几种方法显示了增强空间编码的好处。作者专注于通道关系,并提出了一种新的架构单元,称之为“挤压-激励”(SE)块,该单元通过明确建模通道之间的相互依赖性自适应地重新校准通道级别(channel-wise )的特征响应。作者证明,通过将这些块堆叠在一起所构建的 SENet 架构,在具有挑战性的数据集上泛化得非常好。

2024-03-26 22:05:13 1006

原创 AlexNet论文学习笔记和模型代码

AlexNet有6000万个参数和65万个神经元,由5个卷积层组成,其中某些卷积层其后紧跟最大池化层,还有3个全连接的层,最后是1000路softmax。为了使训练更快,作者使用了非饱和神经元(ReLU激活函数)和一个非常高效的GPU实现卷积操作。为了减少全连接层的过拟合,作者采用了论文发表时不久之前所被提出的一种称为“dropout”的正则化方法,该方法被证明非常有效。

2024-03-26 20:19:43 983

原创 DenseNet《Densely Connected Convolutional Networks》

最近的研究表明,如果卷积网络在靠近输入和接近输出的层之间包含更短的连接,那么卷积网络可以更深入、更准确、更有效地训练。在本文中,作者接受了这一观察结果,并引入了密集卷积网络(DenseNet),它以前馈方式将每一层连接到其他每一层。传统的LLL层卷积网络有LLL个连接——每一层和它的后续层之间有一个连接,而作者提出的网络有LL122LL1​个直接连接。这张配图,HHH表示的是由批量归一化(BN)、ReLU激活函数和卷积层(Conv)组成的非线性映射层。

2024-03-22 17:00:30 1051

原创 Pytorch代码笔记

是指明要调用哪个类的父类的方法,这里是。函数用于调用父类(超类)的一个方法。是指要将哪个实例作为调用父类方法时的。参数传递进去,这里是将创建的。这行代码的意思是调用。

2024-03-22 00:44:41 149

原创 ResNet《Deep Residual Learning for Image Recognition》

残差连接最核心的地方是就是说 resnet 是结合了和是那些跳过一个或多个层的连接。在本文中,只是执行,其输出被添加到堆叠层的输出中。连接既不增加额外的参数,也不增加计算复杂度。整个网络仍然可以通过反向传播的SGD进行端到端训练。下面这个残差块中,旁边的分支首先是一个,而在这个之上,执行了将输入恒等映射到输出端,并与进行相加。

2024-03-21 20:25:47 647

原创 Pytorch学习笔记

方法是一个函数,用于返回张量的大小,即张量元素的总数。相似,也是用来分割张量的,但不同的是你可以指定每个块的大小,而不是块的数量。第一个维度有两个并列的数据,第二个维度有六个并列的数据,第三个维度有三个并列的数据。属性是一个属性,可以直接通过张量对象访问,返回一个元组(tuple),包含了张量每个维度的大小。这个示例将生成两个 3x3 形状的张量,一个是指定均值和标准差的正态分布张量,另一个是标准正态分布张量。表示将原张量的第二个维度移到第一个维度的位置,将原张量的第一个维度移到第二个维度的位置。

2024-03-21 16:40:14 768

原创 深度学习笔记

在深度学习的卷积神经网络(CNN)中,梯度消失和梯度爆炸是两种常见的问题,它们会影响网络的训练效果。梯度消失(Gradient Vanishing):梯度消失是指在深层网络中,由于连续的乘法导致梯度越来越小,使得靠近输入层的权重更新非常缓慢,甚至几乎不更新。这会导致网络训练效果不佳,特别是在网络层数较多的情况下。梯度消失的一个常见原因是使用了不合适的激活函数,比如传统的Sigmoid或者Tanh函数,在深层网络中会导致梯度逐渐接近于零。梯度爆炸(Gradient Exploding)

2024-03-20 15:24:36 949

原创 YOLOv7学习

将灵活高效的训练工具与所提出的网络结构和复合缩放方法相结合。提出的方法将侧重于训练过程的优化。将重点研究一些优化模块和优化方法,这些模块和优化方法可以在不增加推理成本的情况下,增强训练成本以提高目标检测的准确性。称这些模块和优化方法为可训练的bag of freebies。Group Convolution(分组卷积)是一种特殊的卷积操作,用于减少计算量和参数数量,同时保持网络的表达能力。它是普通卷积的一种变体,在普通卷积中,每个输出特征图是通过将输入特征图与一组卷积核进行卷积得到的。

2024-03-20 15:24:27 728

原创 YOLOv4学习

在深度学习和计算机视觉中,“parameter aggregation”这个术语不是一个标准术语,因此它可能会有不同的含义,取决于具体的上下文。在训练多个模型或者在不同时间点保存同一个模型的多个版本时,参数聚合可能指的是将这些不同模型的参数按照某种策略进行融合,以得到一个性能更优的模型。例如,在集成学习中,可能会通过平均或加权平均多个模型的参数来提高测试时的性能。在多任务学习中,参数聚合可能指的是共享层的参数需要在多个任务之间进行聚合,使得模型在训练过程中能够同时学习到多个任务的相关性能。

2024-03-19 14:16:27 850

原创 YOLOv3学习

主要从别人那里获得好点子。我们还训练了一个新的分类器网络,

2024-03-19 10:23:44 839

原创 YOLOv2学习

使用一种新颖的多尺度训练方法,相同的YOLOv2模型可以在不同的尺寸上运行。在速度和准确性之间提供了一个简单的权衡。提出了一种目标检测与分类联合训练的方法。使用该方法,作者在COCO检测数据集和ImageNet分类数据集上同时训练YOLO9000。如何理解这句话?这句话来自YOLO9000论文的一个核心观点,讲的是YOLO9000模型如何利用联合训练(joint training)机制,使得模型能够预测那些没有标注检测数据的对象类别。在机器学习和计算机视觉中,标注数据是模型学习识别和理解图像的关键。

2024-03-18 22:28:58 1073

原创 YOLOv1学习

在深度学习和计算机视觉中,上采样层(Upsampling Layer)和下采样层(Downsampling Layer)是卷积神经网络中用于改变数据维度的层。

2024-03-18 14:23:28 702

原创 Jupyter Notebook 怎么在虚拟环境之间切换

在任意已安装并配置了 Jupyter Notebook 的环境中启动 Jupyter Notebook(这里可以是。将新环境添加到 Jupyter Notebook 的内核列表中。中使用 Jupyter Notebook 了,而且可以随时在不同的虚拟环境之间切换内核。中安装并配置好了 Jupyter Notebook。打开或创建一个新的 Notebook,在菜单栏中选择。打开命令行或终端,激活你的新虚拟环境。这样,你就可以在新的虚拟环境。来切换到新的虚拟环境。在新的虚拟环境中安装。

2024-03-16 15:26:22 596

原创 Jupyter Notebook出错提示An error occurred while retrieving package information解决办法

将这个路径下的 handlers.py 代码进行修改,各人的安装路径不同,对照自己的路径找一下。分析是package版本解析时遇到了问题了。经过测试,成功解决问题。

2024-03-16 14:06:03 418

原创 PDE选择填空

给出二阶偏微分方程 utt−uxx−uxy=x2tu_{tt}-u_{xx}-u_{xy}=x^2tutt​−uxx​−uxy​=x2t 的三维系数矩阵对于二阶偏微分方程 utt−uxx−uxy=x2tu_{tt} - u_{xx} - u_{xy} = x^2tutt​−uxx​−uxy​=x2t,我们可以通过分析每个项的系数来确定三维系数矩阵。在这个方程中,我们有三个变量:x,y,tx,y,tx,y,t,尽管 yyy 没有直接出现在方程中。我们可以将这个方程写成更一般的形式:Auxx+Buyy+Cu

2024-03-09 10:46:22 937

原创 PDE分离变量法

PDE计算波动方程特征线法 *D'Alembert 公式延拓法奇延拓偶延拓适用场景分离变量法 *热传导方程Fourier 变换分离变量法 *位势方程基本解求 Green 函数 *半圆区域无界区域波动方程特征线法 *D’Alembert 公式延拓法奇延拓偶延拓适用场景分离变量法 *热传导方程Fourier 变换分离变量法 *位势方程基本解求 Green 函数 *半圆区域无界区域

2024-03-06 21:35:03 138

原创 变分问题存在唯一性和对应边值问题的导出

变分问题题目题目一题目二题目一设 Ω\OmegaΩ 是 R2\mathbb{R}^2R2 中的一个有界开区域,其光滑边界用 Γ\GammaΓ 表示。Ω\OmegaΩ 上定义的泛函为:J(v)=12∣∣v∣∣H1(Ω)2+∫Γ(12σv2−gv)dsJ(v)=\frac{1}{2}||v||_{H_{1}(\Omega)}^{2}+\int_{\Gamma}(\frac{1}{2}\sigma v^2-gv)dsJ(v)=21​∣∣v∣∣H1​(Ω)2​+∫Γ​(21​σv2−gv)ds其中 σ∈C(Γ

2024-03-06 21:30:40 426

原创 变分和泛函部分的笔记

L2ΩL2​Ω在L2ΩL2​Ω空间中,一个函数vvv的L2L_2L2​∥v∥L2Ω∫Ω∣vx∣2dx12∥v∥L2​Ω​∫Ω​∣vx∣2dx1/2在函数空间中,特别是在平方可积函数的空间L2ΩL2​Ω中,两个函数fff和vvv⟨fv⟩∫Ωfxvxdx⟨fv⟩∫Ω​fxvxdx这里的Ω\OmegaΩ表示定义函数的域,d。

2024-03-05 21:43:58 589

原创 变分问题证明题

这一步骤的关键在于利用了梯度的线性性质和内积的性质来展开和重组积分项。因此,这个等式的推导过程主要用到了梯度算子的线性性质和内积的基本性质。这个等式的推导过程利用了梯度算子的线性性质和内积的性质。,这是一个非负的量,因为它是一个积分的平方项。这一部分的关键在于使用了泛函的一阶变分原理,即如果。这就是我们想要证明的等式。的差,并利用梯度的线性性质和内积的性质来简化表达式。必须满足上述积分等式,这正是弱形式的泊松方程。的极小值点,这个导数应该为零。这就是我们想要证明的结果。这就是我们想要证明的等式。

2024-03-05 15:26:08 658

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除