AT2567 RGB Sequence

对每个右端点, 记录它向左第一次出现某种颜色的位置

\(f[i][r][g][b]\)表示当前考虑到第i位,最后一个r,g,b颜色的出现的位置。

显然有\(i=max(r,g,b)\)

然后就直接\(dp\)就可以了。

/*
@Date    : 2019-10-05 11:48:12
@Author  : Adscn (adscn@qq.com)
@Link    : https://www.cnblogs.com/LLCSBlog
*/
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define IL inline
#define RG register
#define gi geti<int>()
#define gl geti<ll>()
#define gc getchar()
#define File(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
template<typename T>IL bool chkmax(T &x,const T &y){return x<y?x=y,1:0;}
template<typename T>IL bool chkmin(T &x,const T &y){return x>y?x=y,1:0;}
template<typename T>
IL T geti()
{
    RG T xi=0;
    RG char ch=gc;
    bool f=0;
    while(!isdigit(ch))ch=='-'?f=1:f,ch=gc;
    while(isdigit(ch))xi=xi*10+ch-48,ch=gc;
    return f?-xi:xi;
}
template<typename T>
IL void pi(T k,char ch=0)
{
    if(k<0)k=-k,putchar('-');
    if(k>=10)pi(k/10);
    putchar(k%10+'0');
    if(ch)putchar(ch);
}
const int P=1e9+7;
const int N=307;
typedef pair<int,int> pii;
vector<pii>e[N];
int n,m,f[N][N][N];
bool check(int r,int b,int g)
{
    int mx=max(r,max(b,g));
    for(auto&&i:e[mx])
    {
        int l=i.first,x=i.second;
        int tot=0;
        if(r>=l)++tot;
        if(g>=l)++tot;
        if(b>=l)++tot;
        if(tot!=x)return false;
    }
    return true;
}
int main(void)
{
    int n=gi,m=gi;
    for(int i=1;i<=m;++i)
    {
        int l=gi,r=gi,x=gi;
        e[r].push_back(make_pair(l,x));
    }
    ll ans=0;
    f[0][0][0]=1;
    for(int i=0;i<=n;++i)
        for(int j=0;j<=n;++j)
            for(int k=0;k<=n;++k)
            {
                if(!f[i][j][k])continue;
                if((i==j&&i&&j)||(j==k&&j&&k)||(i==k&&i&&k)){f[i][j][k]=0;continue;}
                if(!check(i,j,k))continue;
                int mx=max(i,max(j,k));
                (f[mx+1][j][k]+=f[i][j][k])%=P;
                (f[i][mx+1][k]+=f[i][j][k])%=P;
                (f[i][j][mx+1]+=f[i][j][k])%=P;
                if(mx==n)(ans+=f[i][j][k])%=P;
            }
    pi(ans);
    return 0;
}

转载于:https://www.cnblogs.com/LLCSBlog/p/11624347.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值