题目大意:
给定一个空白的序列,每一个点可以填三种颜色,但是有m个限制条件,即从[l,r]只能有x种不同的颜色,求涂色的方案总数。
思路:
考虑一般的数颜色是如何做的,即固定右端点之后记录下每一个颜色最后出现的位置,然后计算从[l,r]中有多少种不同的颜色。
于是设计这样的一个dp,dp[i][j][k][l]记录到了第i个点之后三种颜色最后出现的位置分别为j,k,l,然后发现必有max(j,k,l)=i,于是i可以直接省略。
然后我们依旧把每一个限制条件挂在右端点处理,DP到一个状态的时候如果这个状态不满足限制,则不从这个状态向后转移,并且清零状态,最后直接统计最终状态的方案数即可。
时间复杂度
Θ(n3)
Θ
(
n
3
)
。
#include<bits/stdc++.h>
#define REP(i,a,b) for(int i=a,i##_end_=b;i<=i##_end_;++i)
#define pii pair<int,int>
#define fi first
#define se second
#define mk make_pair
typedef long long ll;
using namespace std;
void File(){
freopen("ARC074E.in","r",stdin);
freopen("ARC074E.out","w",stdout);
}
template<typename T>void read(T &_){
T __=0,mul=1; char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')mul=-1;
ch=getchar();
}
while(isdigit(ch))__=(__<<1)+(__<<3)+(ch^'0'),ch=getchar();
_=__*mul;
}
const int maxn=310;
const ll mod=1e9+7;
int n,m;
vector<pii>qu[maxn];
ll dp[maxn][maxn][maxn],ans;
void init(){
read(n); read(m);
int l,r,x;
REP(i,1,m){
read(l); read(r); read(x);
qu[r].push_back(mk(l,x));
}
}
void work(){
dp[0][0][0]=1;
REP(i,0,n)REP(j,0,n)REP(k,0,n){
if((i && i==j) || (j && j==k) || (k && i==k))continue;
int nex=max(i,max(j,k))+1,r=nex-1;
bool flag=true;
REP(f,0,qu[r].size()-1){
int l=qu[r][f].fi,x=qu[r][f].se,cnt=0;
if(i && i>=l)++cnt;
if(j && j>=l)++cnt;
if(k && k>=l)++cnt;
if(cnt!=x){
flag=false;
dp[i][j][k]=0;
break;
}
}
if(!flag)continue;
(dp[nex][j][k]+=dp[i][j][k])%=mod;
(dp[i][nex][k]+=dp[i][j][k])%=mod;
(dp[i][j][nex]+=dp[i][j][k])%=mod;
if(r==n)(ans+=dp[i][j][k])%=mod;
}
printf("%lld\n",ans);
}
int main(){
File();
init();
work();
return 0;
}