[ARC074]E - RGB Sequence——动态规划

题目大意:

给定一个空白的序列,每一个点可以填三种颜色,但是有m个限制条件,即从[l,r]只能有x种不同的颜色,求涂色的方案总数。

思路:

考虑一般的数颜色是如何做的,即固定右端点之后记录下每一个颜色最后出现的位置,然后计算从[l,r]中有多少种不同的颜色。
于是设计这样的一个dp,dp[i][j][k][l]记录到了第i个点之后三种颜色最后出现的位置分别为j,k,l,然后发现必有max(j,k,l)=i,于是i可以直接省略。
然后我们依旧把每一个限制条件挂在右端点处理,DP到一个状态的时候如果这个状态不满足限制,则不从这个状态向后转移,并且清零状态,最后直接统计最终状态的方案数即可。
时间复杂度 Θ(n3) Θ ( n 3 )

#include<bits/stdc++.h>

#define REP(i,a,b) for(int i=a,i##_end_=b;i<=i##_end_;++i)
#define pii pair<int,int>
#define fi first
#define se second
#define mk make_pair
typedef long long ll;

using namespace std;

void File(){
    freopen("ARC074E.in","r",stdin);
    freopen("ARC074E.out","w",stdout);
}

template<typename T>void read(T &_){
    T __=0,mul=1; char ch=getchar();
    while(!isdigit(ch)){
        if(ch=='-')mul=-1;
        ch=getchar();
    }
    while(isdigit(ch))__=(__<<1)+(__<<3)+(ch^'0'),ch=getchar();
    _=__*mul;
}

const int maxn=310;
const ll mod=1e9+7;
int n,m;
vector<pii>qu[maxn];
ll dp[maxn][maxn][maxn],ans;

void init(){
    read(n); read(m);
    int l,r,x;
    REP(i,1,m){
        read(l); read(r); read(x);
        qu[r].push_back(mk(l,x));
    }
}

void work(){
    dp[0][0][0]=1;
    REP(i,0,n)REP(j,0,n)REP(k,0,n){
        if((i && i==j) || (j && j==k) || (k && i==k))continue;
        int nex=max(i,max(j,k))+1,r=nex-1;
        bool flag=true;
        REP(f,0,qu[r].size()-1){
            int l=qu[r][f].fi,x=qu[r][f].se,cnt=0;
            if(i && i>=l)++cnt;
            if(j && j>=l)++cnt;
            if(k && k>=l)++cnt;
            if(cnt!=x){
                flag=false;
                dp[i][j][k]=0;
                break;
            }
        }
        if(!flag)continue;
        (dp[nex][j][k]+=dp[i][j][k])%=mod;
        (dp[i][nex][k]+=dp[i][j][k])%=mod;
        (dp[i][j][nex]+=dp[i][j][k])%=mod;
        if(r==n)(ans+=dp[i][j][k])%=mod;
    }
    printf("%lld\n",ans);
}

int main(){
    File();
    init();
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值