MapReduce生成HFile入库到HBase

一、这种方式有很多的优点:

1. 如果我们一次性入库hbase巨量数据,处理速度慢不说,还特别占用Region资源, 一个比较高效便捷的方法就是使用 “Bulk Loading”方法,即HBase提供的HFileOutputFormat类。

2. 它是利用hbase的数据信息按照特定格式存储在hdfs内这一原理,直接生成这种hdfs内存储的数据格式文件,然后上传至合适位置,即完成巨量数据快速入库的办法。配合mapreduce完成,高效便捷,而且不占用region资源,增添负载。

二、这种方式也有很大的限制:

1. 仅适合初次数据导入,即表内数据为空,或者每次入库表内都无数据的情况。

2. HBase集群与Hadoop集群为同一集群,即HBase所基于的HDFS为生成HFile的MR的集群(额,咋表述~~~)

三、接下来一个demo,简单介绍整个过程。

1. 生成HFile部分

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
package zl.hbase.mr;
 
import java.io.IOException;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat;
import org.apache.hadoop.hbase.mapreduce.KeyValueSortReducer;
import org.apache.hadoop.hbase.mapreduce.SimpleTotalOrderPartitioner;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
 
import zl.hbase.util.ConnectionUtil;
 
public class HFileGenerator {
 
     public static class HFileMapper extends
             Mapper<LongWritable, Text, ImmutableBytesWritable, KeyValue> {
         @Override
         protected void map(LongWritable key, Text value, Context context)
                 throws IOException, InterruptedException {
             String line = value.toString();
             String[] items = line.split( "," , - 1 );
             ImmutableBytesWritable rowkey = new ImmutableBytesWritable(
                     items[ 0 ].getBytes());
 
             KeyValue kv = new KeyValue(Bytes.toBytes(items[ 0 ]),
                     Bytes.toBytes(items[ 1 ]), Bytes.toBytes(items[ 2 ]),
                     System.currentTimeMillis(), Bytes.toBytes(items[ 3 ]));
             if ( null != kv) {
                 context.write(rowkey, kv);
             }
         }
     }
 
     public static void main(String[] args) throws IOException,
             InterruptedException, ClassNotFoundException {
         Configuration conf = new Configuration();
         String[] dfsArgs = new GenericOptionsParser(conf, args)
                 .getRemainingArgs();
 
         Job job = new Job(conf, "HFile bulk load test" );
         job.setJarByClass(HFileGenerator. class );
 
         job.setMapperClass(HFileMapper. class );
         job.setReducerClass(KeyValueSortReducer. class );
 
         job.setMapOutputKeyClass(ImmutableBytesWritable. class );
         job.setMapOutputValueClass(Text. class );
 
         job.setPartitionerClass(SimpleTotalOrderPartitioner. class );
 
         FileInputFormat.addInputPath(job, new Path(dfsArgs[ 0 ]));
         FileOutputFormat.setOutputPath(job, new Path(dfsArgs[ 1 ]));
 
         HFileOutputFormat.configureIncrementalLoad(job,
                 ConnectionUtil.getTable());
         System.exit(job.waitForCompletion( true ) ? 0 : 1 );
     }
}

生成HFile程序说明:

①. 最终输出结果,无论是map还是reduce,输出部分key和value的类型必须是: < ImmutableBytesWritable, KeyValue>或者< ImmutableBytesWritable, Put>。

②. 最终输出部分,Value类型是KeyValue 或Put,对应的Sorter分别是KeyValueSortReducer或PutSortReducer。

③. MR例子中job.setOutputFormatClass(HFileOutputFormat.class); HFileOutputFormat只适合一次对单列族组织成HFile文件。

④. MR例子中HFileOutputFormat.configureIncrementalLoad(job, table);自动对job进行配置。SimpleTotalOrderPartitioner是需要先对key进行整体排序,然后划分到每个reduce中,保证每一个reducer中的的key最小最大值区间范围,是不会有交集的。因为入库到HBase的时候,作为一个整体的Region,key是绝对有序的。

⑤. MR例子中最后生成HFile存储在HDFS上,输出路径下的子目录是各个列族。如果对HFile进行入库HBase,相当于move HFile到HBase的Region中,HFile子目录的列族内容没有了。

2. HFile入库到HBase

 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package zl.hbase.bulkload;
 
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles;
import org.apache.hadoop.util.GenericOptionsParser;
 
import zl.hbase.util.ConnectionUtil;
 
public class HFileLoader {
 
     public static void main(String[] args) throws Exception {
         String[] dfsArgs = new GenericOptionsParser(
                 ConnectionUtil.getConfiguration(), args).getRemainingArgs();
         LoadIncrementalHFiles loader = new LoadIncrementalHFiles(
                 ConnectionUtil.getConfiguration());
         loader.doBulkLoad( new Path(dfsArgs[ 0 ]), ConnectionUtil.getTable());
     }
 
}

通过HBase中 LoadIncrementalHFiles的doBulkLoad方法,对生成的HFile文件入库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值