算法导论-----最大子数组(归并解法)

时间复杂度为O(nlgn)
typedef struct Array
{
	int left;
	int right;
	int sum;

}ARRAY,*ARRAYPOINT;

//此函数类似于归并排序里的合并函数
ARRAY FIND_MAX_CROSSING_SUBARRAY(int *A,int low,int mid,int high)
{
	ARRAY  max;
	max.left=mid+1;
	max.right=mid;

	int left_sum=0;
	int sum=0;

	for(int i=mid;i>=low;--i)
	{
		sum+=A[i];
		if(sum>left_sum||max.left>mid)
		{
			left_sum=sum;
			max.left=i;
		}
	}

	max.sum=sum;
	sum=0;
	int right_sum=0;

	for(int j=mid+1;j<=high;++j)
	{
		sum+=A[j];
		if(sum>right_sum||max.right<mid+1)
		{
			right_sum=sum;
			max.right=j;
		}
	}
	
	max.sum+=sum;

	return max;
}

ARRAY FIND_MAXIMUM_SUBARRAY(int *A,int low,int high)
{
	if(low==high)
	{
		ARRAY  max;
		max.left=max.right=low;
		max.sum=A[low];
		return max;
	}
	else
	{
		int mid=(low+high)/2;
		ARRAY left_max,right_max,cross_max;

		left_max=FIND_MAXIMUM_SUBARRAY(A,low,mid);
		right_max=FIND_MAXIMUM_SUBARRAY(A,mid+1,high);
		//类似于归并排序里的合并
		cross_max=FIND_MAX_CROSSING_SUBARRAY(A,low,mid,high);
		
		if(left_max.sum>=right_max.sum&&left_max.sum>=cross_max.sum)
			return  left_max;
		else if(right_max.sum>=left_max.sum&&right_max.sum>=cross_max.sum)
			return right_max;
		else
			return cross_max;
	}
}
int _tmain(int argc, _TCHAR* argv[])
{
	int A[]={13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22};
	ARRAY  max;
	max=FIND_MAXIMUM_SUBARRAY(A,0,sizeof(A)/sizeof(A[0]));

	printf("最大子数组从第%d个元素开始,到第%d个元素结束\n",max.left+1,max.right+1);
	printf("其和为:%d\n",max.sum);

	system("pause");
	return 0;
} 




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值