看书的时候看到一个问题:给定一个锐角三角形,画出其内接正方形
已知:给定三角形
条件:正方形且4个点pA pB pC pD都在三角形ABC上,假设点pA在边AB,pB,pC在边BC,pD在边AC
思路:假设第四个点不在边f上,会发生什么?
会发现这个正方形不固定!因为条件不够
但是把多个正方形画出来就发现,点pD的轨迹居然在一条线上!
而这条线目测是角平分线,至此,作图的问题解决,轨迹如下图
对于钝角三角形呢?很遗憾,此时的轨迹不是角平分线了,如下图。
显然:一个钝角三角形只有一个内接正方形,且正方形的两个点在最长边,很好奇这条线是什么线???
顺便就想到问题2了。
问题2,:该正方形边长怎么求?设边长为x ,|A pA|为y
思路:画出该内接正方形
首先pApD平行BC,相似:x/a=y/c
设bc边高为h,相似:x/h=(c-y)/c
解得x=ha/(a+h)
问题3:给定一个锐角三角形,求其内部的最大正方形的面积?(不一定内接)
思路:考虑贪心
贪心:如果最大面积正方形ABCD只有两个点在三角形边上,那么该正方形肯定能扩展其边长,直到第三个点也在三角形边上
由于此时正方形第四个顶点在角平分线上
可以看到,边长x变化的范围是0~ah/(a+h)
现在是两个顶点在边BC上,还要比较其他两条边为底的情况
初步结论:锐角三角形内最大面积是三个内接正方形面积取最大
对于钝角三角形呢,内部最大正方形面积就是内接正方形吗?
不对,比如下图,3个点的贪心不一定比4个点的贪心差
发现一个钝角三角形的内部最大面积正方形的正解:https://wenku.baidu.com/view/974272a085868762caaedd3383c4bb4cf7ecb735.html