三角形中的正方形,三个问题

看书的时候看到一个问题:给定一个锐角三角形,画出其内接正方形

已知:给定三角形

条件:正方形且4个点pA pB pC pD都在三角形ABC上,假设点pA在边AB,pB,pC在边BC,pD在边AC

思路:假设第四个点不在边f上,会发生什么?

会发现这个正方形不固定!因为条件不够

但是把多个正方形画出来就发现,点pD的轨迹居然在一条线上!

而这条线目测是角平分线,至此,作图的问题解决,轨迹如下图



对于钝角三角形呢?很遗憾,此时的轨迹不是角平分线了,如下图。

显然:一个钝角三角形只有一个内接正方形,且正方形的两个点在最长边,很好奇这条线是什么线???




顺便就想到问题2了。

问题2,:该正方形边长怎么求?设边长为x ,|A pA|为y

思路:画出该内接正方形

首先pApD平行BC,相似:x/a=y/c

设bc边高为h,相似:x/h=(c-y)/c

解得x=ha/(a+h)



问题3:给定一个锐角三角形,求其内部的最大正方形的面积?(不一定内接)

思路:考虑贪心

贪心:如果最大面积正方形ABCD只有两个点在三角形边上,那么该正方形肯定能扩展其边长,直到第三个点也在三角形边上


由于此时正方形第四个顶点在角平分线上



可以看到,边长x变化的范围是0~ah/(a+h)

现在是两个顶点在边BC上,还要比较其他两条边为底的情况


初步结论:锐角三角形内最大面积是三个内接正方形面积取最大


对于钝角三角形呢,内部最大正方形面积就是内接正方形吗?

不对,比如下图,3个点的贪心不一定比4个点的贪心差



发现一个钝角三角形的内部最大面积正方形的正解:https://wenku.baidu.com/view/974272a085868762caaedd3383c4bb4cf7ecb735.html















评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值