pytorch
文章平均质量分 95
AnimateX
预测未来最好的方法就是实现未来
展开
-
PyTorch 深度学习实践-06-[Logistic Regression]
Date: 2021-12-27Repositity: Gitee本节引出分类问题,使用模型为Logistic regression。使用数据集为:MNIST手写数字数据集。0. MNIST Dataset关于MNIST数据集有:训练集大小:60000张手写样本;测试集大小:10000张手些样本;共计10个类别:{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}因此我们需要区分出来 y∈{0, 1, 2, 3, 4, 5,6,原创 2021-12-28 07:54:49 · 1001 阅读 · 0 评论 -
PyTorch 深度学习实践-05-[Linear Regression with PyTorch]
Date: 2021-12-20Repositity: Gitee0. 回顾前述模型为: y^=x∗ω+b\hat{y} = x * \omega + by^=x∗ω+b ,损失函数为MSE: loss=(x∗ω−y)2loss = (x*\omega - y)^2loss=(x∗ω−y)2 ,优化器为梯度下降GD。for epoch in range(100): # Use Tensor: x_data, y_dta for x, y in zip(x_data, y_da.原创 2021-12-26 21:21:38 · 865 阅读 · 2 评论 -
PyTorch 深度学习实践-04-[Back Propagation]
Date: 2021-12-20Repositity: Gitee0. 前言Reference: WIKI反向传播(英语:Back Propagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会回馈给最佳化方法,用来更新权值以最小化损失函数。反向传播要求对每个输入值得到已知输出,来计算损失函数梯度。因此,它通常被认为是一种监督式学习方法,虽然它也用在一些无监督.原创 2021-12-22 00:01:41 · 817 阅读 · 0 评论 -
Pytorch深度学习实践-03-[Gradient Descent]
梯度下降原创 2021-12-19 18:06:50 · 727 阅读 · 0 评论 -
Pytorch 深度学习实践-02-[Linear Model]
Date: 2021-12-17Repositity: Gitee0. 前言通常深度学习模型的训练流程可以简单分为以下4个部分:准备数据集(包含预处理)选择或设计模型(包含loss和优化器)训练(找到最佳的模型参数)推理(部署)接下来从基础的线性模型入手展开。1. 数据集注意事项这里以学习时间和成绩作为样本,考虑篇幅这里仅用文字描述。""" Dataset """# hours[1, 2, 3, 4]# points[2, 4, 6, ?]如上所示,这里给出数据集.原创 2021-12-18 20:14:50 · 1096 阅读 · 0 评论