Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5 you should return [0,1,1,2,1,2].
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
Solution:
public class CountingBits {
/**
* Function II Dynamic Programming
* @param num
* @return bits
*/
public int[] countBits(int num) {
int[] bits = new int[num + 1];
for (int i = 0; i <= num; i++) {
if (i % 2 == 0) { // Even Number
bits[i] = bits[i / 2];
} else {
bits[i] = bits[i / 2] + 1; // Odd Number
}
}
return bits;
}
/**
* Function I Bit Manipulation
* @param n input number
* @return bit
*/
private int countBit(int n) {
int bit = 0;
while (n > 0) {
if ((n & 1) == 1)
bit++;
n = n >> 1;
}
return bit;
}
}
GitHub:LeetCode