《基于椭圆光顺的推进格式结构化网格生成技术》笔记

本文介绍了结构化网格生成技术在计算粘性区域的应用优势及挑战。重点对比了代数方法与求解偏微分方程两种网格生成技术,并详细探讨了椭圆型、双曲型和抛物型偏微方程的适用场景及其生成网格的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

,结构化网格在计算粘性区域时所具有
的“大展弦比”特性,更有利于物面附近粘性效应的
模拟,

结构化网格生成技术主要分为代数方法和求解
偏微分方程两大类。代数方法具有简单快捷优点,但
是对复杂外形生成的网格质量不高,难以保证流场
计算的精度;求解偏微分方程一般分为求解椭圆型、
双曲型和抛物型偏微方程3类,生成的网格质量较
高。

,以求解椭圆型偏微分方程网格生成技术发
展最为成熟。但是当物面上存在尖锐的凸角时,使用
椭圆型方程网格生成技术会出现凸角处网格“压缩”
现象,导致此处网格过密;而在物面凹角处,则会出
现网格“拉伸”现象,导致此处网格过稀,难以真实模拟此处的流动信息。

抛物型偏微方程网格生成技术实际上是将椭圆
型偏微方程抛物化差分离散后进行求解的一种快速贴体正交的网格生成技术。在抛物型网格生成过
程中,应用了一种基于推进思想的代数网格双步预
估方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值