416. 分割等和子集
给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
思路
乍一看与背包问题无关,但其实可以转化成01背包问题:给定N个物品,每个物品的重量为nums[i],和一个容量为sum/2的背包,问是否存在一种方法,可以恰好装满背包。
- 定义dp[i][j]:用前i个数字,是否可能恰好凑成和为i。
- base case:dp[0][…] = False, dp[…][0] = True
- 状态转移:
不用第i个数字:dp[i][j] = dp[i-1][j]。(不用第i个数字,当前背包是否能恰好装满取决于上一个状态)
用第i个数字:dp[i][j] = dp[i-1][j-nums[i-1]]。(当前状态是否能装满背包,取决于不用第i个数字时,背包剩余空间,即空间为j-nums[i-1]时,是否能恰好装满)
综上,dp[i][j] = dp[i-1][j] || dp[i-1][j-nums[i-1]]。 - 目标:返回dp[n][sum/2]
for(int i=1; i<=n; i++) {
for(int j=1; j<=sum/2; j++) {
if(j>=nums[i-1]) {
dp[i][j] = dp[i-1][j] || dp[i-1][j-nums[i-1]];
} else {
dp[i][j] = dp[i-1][j];
}
}
}
return dp[n][sum/2];
空间优化
类似01背包,发现dp[i][j]的状态只与dp[i-1][…]有关,因此可将第一维压缩掉。
- 状态转移:
dp[j] = dp[j] || dp[j-nums[i-1]] - 注意空间压缩后的内层遍历顺序,由于dp[j]依赖于前面的值,因此只能从后向前遍历。
for(int i=1; i<=n; i++) {
for(int j=sum/2; j>=1; j--) {
if (j >= nums[i-1]) {
dp[j] = dp[j] || dp[j-nums[i-1]];
}
}
}
return dp[sum/2];
以下两题待续。。
474. 一和零
https://leetcode-cn.com/problems/ones-and-zeroes/
给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。
待续。。
494. 目标和
https://leetcode-cn.com/problems/target-sum/
给你一个整数数组 nums 和一个整数 target 。
向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :
例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。