猪猪的机器学习笔记(十)人工神经网络

人工神经网络

作者:樱花猪

 

摘要:

本文为七月算法(julyedu.com12月机器学习第十次次课在线笔记。人工神经网络在支持图像处理、文本、语言以及序列多种类型的数据处理时都用用到。本次课程更加侧重于实践,把抽象的人工神经网络用程序展现出来,课上讲述了编程使用的工具和方法,对于日后实验有非常重要的帮助。

 

引言:

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。本次课程讨论了神经网络的基本框架、非常热门的BP算法以及实际编程的要点。

 

预备知识:

概率论;梯度下降法

 

人工神经网络

前向全连接网路

人工神经网络求法

 

一、人工神经网络

    人工神经网络基础形态是前向全连接网络,同时拥有多种变形,这些变形构成了深度学习的主要内容。

卷积网路(CNN):属于部分连接网络,是深度学习结构核心之一

递归网络(RNN):是一种更为复杂的网络结构,能够很好的应对序列数据。

   自编码器(Auto Encoder),一种数据特征学习,类似于PCA的作用

 

二、前向全连接网路(Full connected Forward Network)

1、基础神经单元

神经元是构成神经网络的基本单元,一个神经元的组成包括:

输入:n 维向量x;

线性加权:

激活函数:,求非线性,容易求导;

输出标量:

 

2、常用激活函数:

a、sigmoid函数。输出值域不对称,两头过于平坦。

b、tanh函数。两头过于平坦

C、Rectified linear unit

   收敛速度比sigmoid和tanh快,计算简单高效。是目前最广泛使用的激活函数,特别应用在CNN。

 

3、丛神经元到网络

输入错,输入向量;

中间层(隐含层)

输出层,输出向量,用于预测、分类以及回归。

 

三、人工神经网络求法

1、损失函数(Loss Function)

配合模型训练,有Loss/Error Fuction:

Softmax / Cross-entropy loss:

SVM / hinge loss:

 Least squares (L2 loss):

 

2、输入数据的预处理:

    如果输入数据各个维度数据是相关的,将导致各个权重相互影响,不利于优化算法寻找局部最优解。

    如果各个维度的规模不一致,将导致对应的Error Surface容易出现狭窄区域,不利于优化算法寻找局部最优。

    通常对向量数据必须要用PCA和白化处理,而对于一般的数据只需要做到均值化和归一化。

 

3、训练算法(BP算法)

   神经网络的训练目标是找到W和B使得损失函数最小。优化算法需要计算dW和dB。BP算法就是计算W和B导数的算法。

   BP算法的核心是链式规则。

算法步骤:

a. forward计算一次

b. 逐层计算backwoard得到各个层的dW和dB。

c. 应用随机梯度下降法SGD,更新W,B

 

4、数值校验

   实现BP算法的过程中比较容易出错,因此有必要进行检查。

 

5、算法优化

   多层网络的Error Surface非常复杂,存在很多局部最优,我们要寻找尽可能大的范围内的局部最优。

   动量法不随更新W合适更新“更新W”的速度。

   当位于距离较长的“坡”的时候动量法可以加快滑动速度;当位于平缓的区域时,动量法也能够保持一定的速度。





转载于:https://www.cnblogs.com/Dr-XLJ/p/5369970.html

技术选型 【后端】:Java 【框架】:springboot 【前端】:vue 【JDK版本】:JDK1.8 【服务器】:tomcat7+ 【数据库】:mysql 5.7+ 项目包含前后台完整源码。 项目都经过严格调试,确保可以运行! 具体项目介绍可查看博主文章或私聊获取 助力学习实践,提升编程技能,快来获取这份宝贵的资源吧! 在当今快速发展的信息技术领域,技术选型是决定一个项目成功与否的重要因素之一。基于以下的技术栈,我们为您带来了一份完善且经过实践验证的项目资源,让您在学习和提升编程技能的道路上事半功倍。以下是该项目的技术选型和其组件的详细介绍。 在后端技术方面,我们选择了Java作为编程语言。Java以其稳健性、跨平台性和丰富的库支持,在企业级应用中处于领导地位。项目采用了流行的Spring Boot框架,这个框架以简化Java企业级开发而闻名。Spring Boot提供了简洁的配置方式、内置的嵌入式服务器支持以及强大的生态系统,使开发者能够更高效地构建和部署应用。 前端技术方面,我们使用了Vue.js,这是一个用于构建用户界面的渐进式JavaScript框架。Vue以其易上手、灵活和性能出色而受到开发者的青睐,它的组件化开发思想也有助于提高代码的复用性和可维护性。 项目的编译和运行环境选择了JDK 1.8。尽管Java已经推出了更新的版本,但JDK 1.8依旧是一种成熟且稳定的选择,广泛应用于各类项目中,确保了兼容性和稳定性。 在服务器方面,本项目部署在Tomcat 7+之上。Tomcat是Apache软件基金会下的一个开源Servlet容器,也是应用最为广泛的Java Web服务器之一。其稳定性和可靠的性能表现为Java Web应用提供了坚实的支持。 数据库方面,我们采用了MySQL 5.7+。MySQL是一种高效、可靠且使用广泛的关系型数据库管理系统,5.7版本在性能和功能上都有显著的提升。 值得一提的是,该项目包含了前后台的完整源码,并经过严格调试,确保可以顺利运行。通过项目的学习和实践,您将能更好地掌握从后端到前端的完整开发流程,提升自己的编程技能。欢迎参考博主的详细文章或私信获取更多信息,利用这一宝贵资源来推进您的技术成长之路!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值