正交梯度算子(一阶导)

在边缘灰度值过度比较尖锐切图像中噪声比较小时,梯度算子工作效果好。

1、数字图像中求导数是利用差分近似微分来进行的。

2、梯度对应一阶导,梯度是矢量。
211105131662549.png  
矢量的幅度(有时候常称为梯度)
211105135104275.png
方向角:
211105139947662.png

注意:范数的概念,实际上就是一种求距离的方法,详见 距离度量函数
幅度有这里用欧式距离是2范数,城区距离是1范数,∞范数是棋盘距离。

实际计算中先计算每个图片对应点的(Gx,Gy),然后求范数,范数的值就是灰度图,范数大灰度高的地方是边界。

一般地,计算Gx,Gy都有两个模板,分别对图片做两次卷积,然后再求范数。

总的来说2范数还是精度高一些,但是计算量比较大。

常见的几种模板:

211105143383618.png




转载于:https://www.cnblogs.com/Dr-XLJ/p/3854716.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值