在基于熵的音频相似度度量中,用到Parzen窗法对所提取的MFCC参数进行概率密度函数估计,
其MATLAB实现如下:
function p=Parzen(xi,x,h1,f)
%xi为样本,x为概率密度函数的自变量的取值,
%h1为样本数为1时的窗宽,f为窗函数句柄
%返回x对应的概率密度函数值
if isempty(f)
%若没有指定窗的类型,就使用正态窗函数
f=@(u)(1/sqrt(2*pi))*exp(-0.5*u.^2);
end;
N=size(xi,2);
hn=h1/sqrt(N);
[X Xi]=meshgrid(x,xi);
p=sum(f((X-Xi)/hn)/hn)/N;
由于不知道如何在m语言中设置函数参数的默认值或设置可变参数,所以即使你使用默认的正态窗,也需要传入f参数,传入为‘[]’。
举例说明这个函数的用法:
>>xi=rand(1,1024);
>>x=linspace(-1,2,1024);
>>p=Parzen(xi,x,1,[]);
>>plot(x,p);
得到如下图形:
上面演示的是均匀分布,现在再试试正态分布:
>>xi=randn(1,1024);
>>x=linspace(-2,2,1024);
>>p=Parzen(xi,x,1,[]);
>>plot(x,p);
得到如下图形:
最好不要设置太大的N