报告解读《Agentic AI安全技术应用报告(2025)》

一、Agentic AI的崛起与安全挑战

随着大语言模型(如DeepSeek)和多模态AI的快速发展,Agentic AI(智能体AI系统)成为技术焦点,其核心是通过自主感知、推理和决策完成复杂任务(如OpenManus、Flowith等应用)。然而,AI的内生风险(如数据泄露、模型对抗攻击)和使用风险(如合规性、伦理冲突)为网络安全带来新挑战,迫使企业重新审视AI安全架构。

二、关键发现
  1. 政策与治理

    • 2023年后全球AI安全监管加速,中国治理力度领先,但技术评测能力仍处早期。

    • 焦点从“技术追赶”转向“发展与安全平衡”,需完善合规框架。

  2. 技术应用现状

    • 国内网络安全智能化正从“小模型”向“大模型+Agent”过渡,但当前主流仍是LLMs与小模型协同模式。

    • AI赋能覆盖威胁检测、攻防对抗等场景,安全运营、开发安全、攻防对抗成为三大重点领域。

  3. 产业格局

    • 衍生AI安全治理AI赋能安全两大新赛道,参与者包括传统安全厂商(如奇安信)和AI创新企业。

    • 软件供应链安全因AI赋能迎来“第二春”,人才与资源分配重构。

  4. 未来趋势

    • Agentic AI安全将在2年内规模化落地,5年进入稳定期。

    • Agents为核心的主动防御将替代被动防御,推动网络安全生态重构。

三、安全风险与框架
  1. 洋葱风险模型
    将Agentic AI风险分为四层:

    • 内生性风险(模型漏洞、数据偏差);

    • 使用性风险(滥用、隐私泄露);

    • 供应链风险(第三方组件隐患);

    • 伦理与合规风险(法律冲突)。

  2. 三重安全内涵

    • 系统自身安全(模型健壮性);

    • 使用安全(合规与透明度);

    • 赋能网络安全(AI驱动的威胁检测)。

  3. 管控框架

    • 覆盖“验证-防护-监测-增强”全生命周期,强调动态监测与闭环管理。

    • 需结合技术防护(如对抗训练)与管理流程(如合规审计)。

四、赋能网络安全的实现路径
  1. 核心架构

    • Agentic AI系统(大模型+安全智能体);

    • 基础安全设施(网络、数据层);

    • 风险管控系统(策略制定、应急响应)。

  2. 建设原则

    • 规划阶段:明确AI战略与风险管理目标;

    • 设计阶段:采用场景驱动的渐进式实施;

    • 运营阶段:持续优化模型与环境适应性。

五、挑战与建议
  1. 短期

    • 优先解决模型内生风险(如对抗攻击防护);

    • 建立AI使用合规基线(如《个人信息保护法》适配)。

  2. 长期

    • 推动AI原生安全技术(如量子加密、联邦学习);

    • 构建跨行业可信数据空间,平衡数据流通与安全。

六、展望

Agentic AI将重塑网络安全范式,从“被动响应”转向“智能主动防御”。未来需重点关注:

  1. 技术融合:AI与零信任、边缘计算的协同;

  2. 生态协同:厂商、政策制定者与企业共建安全标准;

  3. 全球治理:中国方案(如洋葱模型)提升国际话语权。

### Agentic AI介绍 Agentic AI描述的是人工智能具备自主性的能力和行为[^2]。这种技术使机器能够在复杂环境中独立做出决策,设定目标并采取行动来达成这些目标。 #### 原理 Agentic AI的核心在于赋予计算机程序或机器人自我意识和主动解决问题的能力。这涉及到多个方面: - **感知能力**:通过传感器或其他输入机制获取周围世界的实时数据。 - **认知处理**:利用算法分析收集到的数据,理解当前状况以及可能的变化趋势。 - **规划与决策**:基于对环境的理解,制定行动计划,并评估不同选项之间的利弊得失。 - **执行控制**:按照选定策略实施具体操作,同时监控进展并对意外情况进行调整。 ```python def agentic_ai_process(environment_data): perception_results = analyze_environment(environment_data) decision_plan = make_decision(perception_results) execute_actions(decision_plan) while not goal_achieved(): adjust_strategy() continue_execution() ``` #### 特点 - 自主性:无需人类持续干预即可自行运作。 - 目标导向性:能够设立长期或短期的目标,并努力实现它们。 - 适应性:面对变化时表现出灵活性,快速学习新情况下的最佳应对方式。 - 多功能性:适用于各种应用场景,从工业制造到个人助理服务等领域。 #### 应用 Agentic AI应用非常广泛,在零售业中,AI Agents可以帮助优化库存管理和客户服务体验;在物流配送领域,则可提高运输效率降低运营成本。此外,还有智能家居控制系统、自动驾驶汽车等新兴方向也离不开这项关键技术的支持[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值