一、Agentic AI的崛起与安全挑战
随着大语言模型(如DeepSeek)和多模态AI的快速发展,Agentic AI(智能体AI系统)成为技术焦点,其核心是通过自主感知、推理和决策完成复杂任务(如OpenManus、Flowith等应用)。然而,AI的内生风险(如数据泄露、模型对抗攻击)和使用风险(如合规性、伦理冲突)为网络安全带来新挑战,迫使企业重新审视AI安全架构。
二、关键发现
-
政策与治理:
-
2023年后全球AI安全监管加速,中国治理力度领先,但技术评测能力仍处早期。
-
焦点从“技术追赶”转向“发展与安全平衡”,需完善合规框架。
-
-
技术应用现状:
-
国内网络安全智能化正从“小模型”向“大模型+Agent”过渡,但当前主流仍是LLMs与小模型协同模式。
-
AI赋能覆盖威胁检测、攻防对抗等场景,安全运营、开发安全、攻防对抗成为三大重点领域。
-
-
产业格局:
-
衍生AI安全治理与AI赋能安全两大新赛道,参与者包括传统安全厂商(如奇安信)和AI创新企业。
-
软件供应链安全因AI赋能迎来“第二春”,人才与资源分配重构。
-
-
未来趋势:
-
Agentic AI安全将在2年内规模化落地,5年进入稳定期。
-
以Agents为核心的主动防御将替代被动防御,推动网络安全生态重构。
-
三、安全风险与框架
-
洋葱风险模型:
将Agentic AI风险分为四层:-
内生性风险(模型漏洞、数据偏差);
-
使用性风险(滥用、隐私泄露);
-
供应链风险(第三方组件隐患);
-
伦理与合规风险(法律冲突)。
-
-
三重安全内涵:
-
系统自身安全(模型健壮性);
-
使用安全(合规与透明度);
-
赋能网络安全(AI驱动的威胁检测)。
-
-
管控框架:
-
覆盖“验证-防护-监测-增强”全生命周期,强调动态监测与闭环管理。
-
需结合技术防护(如对抗训练)与管理流程(如合规审计)。
-
四、赋能网络安全的实现路径
-
核心架构:
-
Agentic AI系统(大模型+安全智能体);
-
基础安全设施(网络、数据层);
-
风险管控系统(策略制定、应急响应)。
-
-
建设原则:
-
规划阶段:明确AI战略与风险管理目标;
-
设计阶段:采用场景驱动的渐进式实施;
-
运营阶段:持续优化模型与环境适应性。
-
五、挑战与建议
-
短期:
-
优先解决模型内生风险(如对抗攻击防护);
-
建立AI使用合规基线(如《个人信息保护法》适配)。
-
-
长期:
-
推动AI原生安全技术(如量子加密、联邦学习);
-
构建跨行业可信数据空间,平衡数据流通与安全。
-
六、展望
Agentic AI将重塑网络安全范式,从“被动响应”转向“智能主动防御”。未来需重点关注:
-
技术融合:AI与零信任、边缘计算的协同;
-
生态协同:厂商、政策制定者与企业共建安全标准;
-
全球治理:中国方案(如洋葱模型)提升国际话语权。