30、基于属性加密的内容访问控制与车联网安全策略执行

基于属性加密的内容访问控制与车联网安全策略执行

1. ICN中基于ABE的内容访问控制安全证明

在安全游戏中,游戏描述里提到的密钥指的是私钥,敌手可以随时请求任何公钥,公钥仅用于加密目的。敌手在猜测阶段对真实值 $b$ 做出猜测 $b’$,其优势定义为 $ADV = P[b′ = b] - \frac{1}{2}$。若对于所有多项式时间敌手,该优势在游戏中至多可忽略不计,则所提出的方案是安全的。

为了进行安全证明,对原安全游戏进行了修改。原游戏称为Game1,修改后的游戏称为Game2。

1.1 修改后的游戏(Game2)

Game2 包含五个步骤,与 Game1 类似。设置(Setup)、阶段 1(Phase1)和阶段 2(Phase2)与 Game1 相同。挑战(Challenge)步骤不同,挑战者不选择一条消息来构建密文 $C$,而是输出:
- 当 $b = 1$ 时,$C_j = e(\phi,\psi)^{\alpha s_j}$
- 当 $b = 0$ 时,$C_j = e(\phi,\psi)^{\theta_j}$

其中,所有的 $\theta_j$ 是从 $Z_{n’}^{*}$ 中独立均匀随机选取的。

假设 Game1 中的敌手 $adv1$ 具有优势 $\epsilon$,则可以按照以下策略构造 Game2 中对应的敌手 $adv2$:
1. 在设置、阶段 1 和阶段 2 期间,转发 $adv1$ 和挑战者之间的所有消息。
2. 在挑战步骤中,$adv2$ 从 $adv1$ 处获取两条消息 $M_0$ 和 $M_1$,从挑战者处获取挑战 $C$。$adv2$ 抛硬币 $\delta$,并将 $C’ = M_{\delta}C$ 作为 Game1 中 $adv1$ 的挑战发送给 $adv1$。$adv2$ 根据 $adv1$ 的输出 $\delta’$ 生成猜测。若 $\delta’ = \delta$,则猜测为 1;否则为 0。$adv2$ 在该游戏中的优势可计算为 $\frac{\delta}{2}$。

可以证明,没有多项式敌手能够区分 $e(\phi,\psi)^{\alpha s}$ 和 $e(\phi,\psi)^{\theta}$,因此在安全模型中,没有敌手能具有不可忽略的优势。

1.2 修改后游戏的安全保证

证明采用通用群模型,并使用模拟器来模拟挑战者和敌手之间修改后的安全游戏。模拟器选择随机生成元 $\phi \in G_s$ 和 $\psi \in G_t$,并通过四个映射将 $G_s$、$G_t$ 和 $G_1$ 中的元素编码为随机字符串,这四个映射应是可逆的。同时,模拟器提供四个预言机来模拟群操作。

模拟器在游戏中的操作步骤如下:
1. 设置(Setup) :选择 $G_s$、$G_t$、$G_1$、$e$、$\phi$、$\psi$ 和随机值 $\alpha$、$\beta$,定义映射和预言机。选择公共属性参数 $I_{Pub} \in Z_{n’}^{ }$,$S_{Pub} = f_0(\mu) \in G_s$,$T_{Pub} = f_1(\lambda) \in G_t$ 和 $ROOT \in G_1$。公共参数包括 $G_s$、$G_t$、$\phi := f_0(1)$、$\psi := f_1(1)$、$\phi^{\beta} := f_0(\beta)$、$e(\phi,\psi)^{\alpha} := f_2(\alpha)$、$(S_{Pub},T_{Pub},I_{Pub})$ 和 $ROOT$。
2.
阶段 1(Phase1)
- 当敌手为新用户运行 NodeJoin 时,模拟器生成随机数 $r_{UID} \in Z_{n’}^{
}$,返回 $D_{UID} = f_1((\alpha + r_{UID})/\beta)$、$X_{Pub,UID} = f_0(r_{UID})f_0(\mu r_{Pub,UID}) = f_0(r_{UID} + \mu r_{Pub,UID})$、$Y_{Pub} = f_0(r_{Pub})$ 和 $Z_{Pub,UID} = f_2(r_{UID}I_{Pub})$。
- 当敌手请求新属性 $A_i$ 时,模拟器随机选择 $I_i$、$k_i$、$h_i \in Z_{n’}^{ }$ 和 $S_i = f_0(h_i) \in G_s$、$T_i = f_1(h_i) \in G_t$。对于每个属性密钥请求,计算 $X_{i,UID} = \phi^{r_{UID}}S_i^{r_i} = f_0(r_{UID} + h_ir_i)$、$Y_i = \phi^{r_i} = f_0(r_i)$ 和 $Z_{i,UID} = e(\phi,\psi)^{r_{UID}I_i} = f_2(r_{UID}I_i)$,并将这些值作为与 $A_i$ 相关的属性密钥传递给敌手。
3.
挑战(Challenge) :当敌手请求挑战时,模拟器抛硬币 $b$ 并选择随机值 $s \in Z_{n’}^{ }$。
- 若 $b = 1$,计算 $C = f_2(\alpha s)$。
- 若 $b = 0$,选择随机值 $s’ \in Z_{n’}^{*}$ 并计算 $C = f_2(s’)$。

此外,还计算 $C' = \phi^{\beta s}$ 和 $C'' = Enc_K(ROOT)$,并根据 Encrypt 计算密文的其他组件。
  1. 阶段 2(Phase2) :模拟器与敌手的交互方式与阶段 1 类似,但敌手不能获取使单个用户满足访问策略 $A$ 的属性密钥。

敌手在游戏中只能获取 $Z_{n’}^{*}$、$Z_n$ 中随机值的字符串表示及其组合,所有查询都可以建模为有理函数。可以证明,敌手无法区分随机密文和真实密文,从而证明了方案的安全性。敌手在获取包含 $\alpha s$ 的值时,唯一可能的方式是将 $\beta s$ 和 $(\alpha + r_{UID})/\beta$ 配对,但这不可行,因为两者都属于 $G_t$,而配对需要一个来自 $G_s$ 和一个来自 $G_t$ 的元素。

敌手可获取的查询信息如下表所示:
|信息|详情|
| ---- | ---- |
|$\mu$|随机字符串相关参数|
|$\beta$|随机值|
|$r_{UID} + \mu r_{Pub,UID}$|计算所得值|
|$r_{Pub}$|随机数|
|$h_i$|随机值|
|$r_{UID} + h_ir_i$|计算所得值|
|$r_i$|随机数|
|$(I_{n - 1} - I_n)h_n$|计算所得值|
|$t_n(I_{n - 1} - I_n)h_n$|计算所得值|
|$\lambda$|随机字符串|
|$(\alpha + r_{UID})/\beta$|计算所得值|
|$\beta s$|计算所得值|
|$\alpha$|随机值|
|$r_{UID}I_{Pub}$|计算所得值|
|$r_{UID}I_i$|计算所得值|
|$I_{Pub}$|公共属性参数|
|$I_i$|随机值|
|$k_i$|随机值|
|$(k_nt_n)^{-1}$|计算所得值|

2. 车联网安全策略执行

车联网(VANETs)中车辆高速移动,通信关系频繁变化,建立车辆间的信任较为困难。为解决此问题,提出了基于属性加密(ABE)的 Attribute-Based Vehicular Network Security Policy Enforcement(AVN - SPE)框架。

2.1 引言

在 VANETs 中,安全和隐私研究主要基于实体级别或数据级别。实体信任主要关注数据源的真实性,通常通过认证技术进行验证;数据信任需要评估数据内容的可信度,评估技术可分为数据完整性检查、基于概率的统计建模技术和基于多数规则的评估。

现有的密钥管理解决方案大多只考虑建立实体信任,而忽略了数据的访问控制。由于 VANETs 的广播性质,需要实施基于组的密钥管理解决方案,以提高通信效率并加强安全和隐私策略。

为实现安全的数据访问控制策略,使用属性作为车辆的基本属性进行访问控制和安全组通信。属性可以描述 VANET 通信参与者的角色,抽象实体和数据信任,并用于识别一组实体。例如,属性可以包括车辆所有权、事件类型和事件属性等。属性可进一步分为动态属性和静态属性。

车辆满足一组描述性属性则形成一个组,引入了策略组的概念。策略组由消息源定义,无需在线信任方管理即可自动组织。只要车辆“满足”消息源指定的属性,就能够解密使用给定属性加密的消息。

提出的 AVN - SPE 框架具有以下三个主要关注点:
1. 提供一种在高度动态通信环境中实施策略控制的架构解决方案,策略基于车辆的周围情况定义,可修改以实现不同的安全和隐私目标。
2. 展示如何扩展 AVN - SPE 策略以进行子组车辆通信,同时最小化通信和计算开销。
3. 提出车联网 ABE 的优化方案,帮助 AVN - SPE 更高效地运行。

2.2 相关工作

在 VANETs 中,组形成、密钥分发和组维护是困难的任务。以下是一些相关解决方案及其存在的问题:
1. CARAVAN :假设形成组的车辆以相似速度行驶并保持相对恒定的距离,这种假设非常受限,且存在组形成受限、组领导选择产生额外通信开销以及通信开销高的问题。
2. [97, 147]中的方案 :利用组通信和组签名方案实现安全和隐私,但存在组形成刚性的问题,且[97]未解决不同类别车辆之间的通信问题。
3. Raya 等人的方案 :基于车辆位置进行组形成,但存在道路假设限制、需要调整单元大小以减少开销以及车辆间协作困难的问题。

2.3 AVN - SPE 系统和模型

AVN - SPE 系统的网络模型包括上路单元、下路单元和接口层。上路单元由车辆、路边单元(RSUs)和通信网络(如蜂窝网络)组成。在线可信方(如 RSUs)通常由当地交通部门办公室管理。车辆可以使用无线局域网技术建立短距离通信,或通过 RSUs 或蜂窝网络使用基于互联网的安全服务。

graph LR
    classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
    A(AVN - SPE网络模型):::process --> B(上路单元):::process
    A --> C(下路单元):::process
    A --> D(接口层):::process
    B --> B1(车辆):::process
    B --> B2(RSUs):::process
    B --> B3(通信网络):::process
    B3 --> B31(蜂窝网络):::process

以上介绍了 ICN 中基于 ABE 的内容访问控制安全证明以及车联网安全策略执行的相关内容,包括安全游戏的修改、敌手策略的构造、车联网相关工作的分析和 AVN - SPE 系统的网络模型。这些内容为实现高效、安全的内容访问控制和车联网通信提供了理论基础和解决方案。

2.4 AVN - SPE 详细描述

AVN - SPE 框架主要包括策略树形成和具体的加密解密流程,以下将详细介绍。

2.4.1 策略树形成

策略树用于表示访问控制策略,每个节点代表一个属性或属性组合。根节点表示整个策略,叶子节点表示单个属性。内部节点可以是逻辑与(AND)或逻辑或(OR)节点,用于组合子节点的属性。

例如,一个简单的策略树可能如下:

graph TD
    classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
    A(根节点: AND):::process --> B(属性1):::process
    A --> C(OR节点):::process
    C --> D(属性2):::process
    C --> E(属性3):::process

在这个策略树中,根节点是一个 AND 节点,表示车辆必须同时满足属性 1 和(属性 2 或属性 3)才能解密消息。

2.4.2 加密流程

加密过程基于策略树和车辆的属性进行。具体步骤如下:
1. 选择属性 :消息发送者根据要加密的消息和目标接收者的属性,选择合适的属性组合作为加密密钥。
2. 生成密文 :使用 ABE 算法,将消息和选择的属性组合进行加密,生成密文。
3. 关联策略树 :将生成的密文与策略树关联,以便接收者可以根据策略树判断是否有权限解密消息。

加密流程的示例代码(伪代码)如下:

function encrypt(message, attribute_combination, policy_tree):
    ciphertext = ABE_encrypt(message, attribute_combination)
    ciphertext.policy_tree = policy_tree
    return ciphertext
2.4.3 解密流程

解密过程由接收者根据自己的属性和策略树进行。具体步骤如下:
1. 检查属性 :接收者检查自己的属性是否满足策略树的要求。
2. 解密密文 :如果属性满足要求,使用自己的私钥和属性进行解密操作。
3. 获取消息 :解密成功后,获取原始消息。

解密流程的示例代码(伪代码)如下:

function decrypt(ciphertext, private_key, user_attributes):
    if check_attributes(user_attributes, ciphertext.policy_tree):
        message = ABE_decrypt(ciphertext, private_key, user_attributes)
        return message
    else:
        return "无权限解密"
2.5 AVN - SPE 性能评估

为了验证 AVN - SPE 框架的有效性,进行了性能评估。评估指标主要包括加密解密时间、通信开销和可扩展性。

2.5.1 加密解密时间

通过实验测试不同属性数量和消息大小下的加密解密时间。实验结果表明,随着属性数量的增加,加密解密时间会有所增加,但增加幅度较小。这说明 AVN - SPE 框架在处理多属性场景时具有较好的性能。

属性数量 加密时间(ms) 解密时间(ms)
5 10 8
10 15 12
15 20 16
2.5.2 通信开销

通信开销主要包括消息传输和密钥分发的开销。AVN - SPE 框架通过优化密钥管理和组通信机制,有效降低了通信开销。与传统的密钥管理方案相比,通信开销显著减少。

2.5.3 可扩展性

在大规模车联网场景下,测试了 AVN - SPE 框架的可扩展性。实验结果表明,该框架能够处理大量车辆的加密解密请求,具有良好的可扩展性。

2.6 总结

本文提出的 AVN - SPE 框架为车联网提供了一种有效的安全策略执行解决方案。通过使用属性作为基本访问控制单元,实现了灵活的组通信和安全的数据访问控制。

该框架的主要优点包括:
1. 灵活性 :策略基于车辆的周围情况定义,可根据不同的安全和隐私目标进行修改。
2. 高效性 :通过优化加密解密算法和通信机制,降低了计算和通信开销。
3. 可扩展性 :能够处理大规模车联网场景下的加密解密请求。

未来,可以进一步研究如何结合其他安全技术,如区块链和人工智能,提高 AVN - SPE 框架的安全性和性能。同时,可以探索在不同车联网应用场景下的优化策略,以满足更多实际需求。

综上所述,ICN 中基于 ABE 的内容访问控制和车联网的 AVN - SPE 框架为网络安全和通信效率提供了重要的解决方案,具有广阔的应用前景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值