算法:2、正整数组成的集合 nums ,返回其中最大的整除子集 answer

这篇博客探讨了一道算法问题,目标是从给定的正整数集合 nums 中找出最大的整除子集 answer,该子集中任意两个元素之间可以相互整除。
摘要由CSDN通过智能技术生成

1:题目

 给你一个由 无重复 正整数组成的集合 nums ,请你找出并返回其中最大的整除子集 answer ,子集中每一元素对 (answer[i], answer[j]) 都应当满足:
 answer[i] % answer[j] == 0 ,或
 answer[j] % answer[i] == 0
 如果存在多个有效解子集,返回其中任何一个均可。

 示例 1:
 输入:nums = [1,2,3]
 输出:[1,2]
 解释:[1,3] 也会被视为正确答案。

 示例 2:
 输入:nums = [1,2,4,8]
 输出:[1,2,4,8]

 提示:
 1 <= nums.length <= 1000
 1 <= nums[i] <= 2 * 109
 nums 中的所有整数 互不相同

题解:

class Solution:
    def rob(self, nums: [int]) -> [int]:
        # 数组的长度
        len_n = len(nums)
        if len_n == 1:
            # 长度为1时,直接返回
            return nums
        else:
            # 数组排序,方便整除子集的取得
            nums.sort()
            r_n = []
            i = len_n - 2
            n_dict = {nums[len_n-1]: [nums[len_n-1]]}
            while i &g
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值