题意:
给你一个字符串,求他有多少个子串是300的倍数
位置不同也算不同
题目链接:
https://ac.nowcoder.com/acm/contest/884/K
题解:
先求出每个数字后面有多少个连续的0,连续的0会有 n*(n+1)/2 个子串可被300整除
枚举一遍每个字符,当该字符后面有0时候,算出以该字符为结尾有多少子串可被3整除即可
你可以开一个sum数组 每一位前缀和 % 3 作为下标记录
例如:
str: 1 1 1 0 1 1 0 1
sum: 1 2 0 0 1 2 0 1
如果该位前缀和 % 3 == 0 则前面子串的数量为 sum[0]
如果为 1、2 则数量为sum[1] -1 或 sum[2] - 1
AC_code:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
char ss[100005];
ll numm[100005];
int sum[5];
int main() {
scanf("%s", ss);
int n = strlen(ss);
memset(numm, 0, sizeof(numm));
sum[0] = 0, sum[1] = 0, sum[2] = 0;
ll q = 0;
for(int i = 0; i < n; i++) {
if(ss[i] == '0') {
ll ans = 0;
int j = i;
while(ss[j] == '0') {
ans++;
j++;
}
numm[i-1] = ans;
q += ans * (ans + 1) / 2;
i = j - 1;
}
}
ll o = 0;
ll hh = 0;
for(int i = 0; i < n-2; i++) {
o += ss[i] - '0';
sum[o%3]++;
if(ss[i+1] == '0' && ss[i] !='0') {
if(o%3 == 0) {
q += max(0LL, numm[i]-1) * sum[o%3];
} else {
q += max(0LL, numm[i]-1) * (sum[o%3]-1);
}
}
}
cout<<q<<endl;
return 0;
}