题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 N 元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅 无
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:
v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)
请你帮助金明设计一个满足要求的购物单。
输入
第 1 行,为两个正整数,用一个空格隔开:
N m
(其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)
从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数
v p q
(其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)
输出
只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。
样例输入
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
样例输出
2200
题解
这道题一共有5个决策:
1.不选当前物品;
2.选择当前物品,但不选附件;
3.选择当前物品与附件1;
4.选择当前物品与附件2;
5.选择当前物品与附件1、2。
然后我们很容易想到用01背包的转移方程转移,但是在转移前需要先判断,当前容量是否可以再装下附件。
对于选择附件1:dp[ i ]=max( dp[ i ],dp[ i - v[ fa ] - v[ s1 ] ] + v[ fa ] * p[ fa ] + v[ s1 ] * p[ s1 ] );
对于选择附件2:dp[ i ]=max( dp[ i ],dp[ i - v[ fa ] - v[ s2 ] ] + v[ fa ] * p[ fa ] + v[ s2 ] * p[ s2 ] );
对于选择附件1、2:dp[ j ]=max( dp[ j ],dp[ j - v[ fa] - v[ s1 ] - v[ s2 ] ] + v[ fa ] * p[ fa ] + v[ s1 ] * p[ s1 ] + v[ s2 ] * p[ s2 ] );
#include<cmath> #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> #define ll long long #define ull unsigned long long #define maxx 2139062143 #define maxint 2147483647 using namespace std; const int maxn=32000+100; const int maxm=100; int N,m,cnt; int v[maxm],p[maxm],q[maxm]; int dp[3000001]; int son[maxm][3]; int s[maxm]; int read(){ int xx=0,kk=1;char ch; while(ch<'0'||ch>'9') {if(ch=='-')kk=-1;ch=getchar();} while(ch>='0'&&ch<='9'){xx=xx*10+ch-'0';ch=getchar();} return kk*xx; } int main(){ N=read(),m=read(); N/=10; for(int i=1;i<=m;i++){ v[i]=read(),p[i]=read(),q[i]=read(); v[i]/=10; if(q[i]==0){ cnt++; s[cnt]=i; } else{ if(son[q[i]][1]==0) son[q[i]][1]=i; else son[q[i]][2]=i; } } int ans=0; memset(dp,0,sizeof(dp)); for(int i=1;i<=cnt;i++){ int fa=s[i]; for(int j=N;j>=v[i];j--){ dp[j]=max(dp[j],dp[j-v[fa]]+v[fa]*p[fa]); int s1=son[fa][1],s2=son[fa][2]; if(s1!=0&&j-v[fa]-v[s1]>=0) dp[j]=max(dp[j],dp[j-v[fa]-v[s1]]+v[fa]*p[fa]+v[s1]*p[s1]); if(s2!=0){ if(j-v[fa]-v[s2]>=0) dp[j]=max(dp[j],dp[j-v[fa]-v[s2]]+v[fa]*p[fa]+v[s2]*p[s2]); if(j-v[fa]-v[s1]-v[s2]>=0) dp[j]=max(dp[j],dp[j-v[fa]-v[s1]-v[s2]]+v[fa]*p[fa]+v[s1]*p[s1]+v[s2]*p[s2]); } ans=max(ans,dp[j]); } } cout<<ans*10; return 0; }