DVA数据可视化分析1-使用免费在线共享网站Argo lite做交互的可共享网络关系图

Argo lite Argo Lite: Interactive Graph Visualization in Your Browser! (poloclub.github.io)

是一个免费的在线交互关系可视化开源网站。

开源代码在此:GitHub - poloclub/argo-graph-lite: Interactive Graph Visualization in Your Browser

这里介绍如何使用Argo Lite 来实现关系图。

Argo Lite是佐治亚理工大学的计算机专业学生项目,详细可以看下面的论文,里面有作者的介绍视频:Argo Lite | Proceedings of the 29th ACM International Conference on Information & Knowledge Management

Argo Lite的优势:

1.免费开源不解释;

2.可交互,做出来的图可以随时调节展示的结果;

3.做出来的图可以通过保存到本地,也可以通过链接分享给任何人,别人也可以进行修改;

案例

从IMDB上使用API下载并保存电影人和他们之间的关系图,然后导入到Argo Lite中来做可视化展示。

数据来源:

IMDB提供了API,可以用来获取演员的数据和关系:

第一步:以某一个演员A开始,获取他的参演电影,再遍历参演电影中的合作者,保存到node和edges中

#1. 以一个演员A开始,通过API获取他所有的参演电影(vote_avg_threshold = 8.0 只保留评分超过8.0的电影)
    url = "https://api.themoviedb.org/3/person/" + person_id + "/movie_credits?api_key=" +self.api_key + "&language=en-US"
    url_get = requests.get(url).text
    data = json.loads(url_get)
    cast = data['cast']
    movie_for_person = []
    for cast_ind in cast:
        if cast_ind['vote_average'] >= vote_avg_threshold:
        movie_for_person.append(cast_ind)
    

#2. 获取每个参演的电影的前3名合作者(排除掉A),增加到node 和 edge表中

    for movie_credit in start_movie_credit:
        #get the movie cast members having an 'order' value between 0-2 (these are the co-actors)

        cast_members = tmdb_api_utils.get_movie_cast(movie_credit['id'], 3, [])
        #print(cast_members)
        node_list = []
        #   FOR each movie cast member:
        for cast in cast_members:
            graph.add_node(str(cast['id']), cast['name'])
            graph.add_edge('2975', str(cast['id']))

第二步:对新增加的电影人列表,执行同样的操作:查找每个人B的参演电影,根据参演电影增加合作电影人,如果新的电影人C在现在的node表中不存在,则增加新的node,并且增加新的B-C关系edge.

最后得到的node 和edge 表如下图:

nodes.csv:

id,name
2975,Laurence Fishburne
6384,Keanu Reeves
530,Carrie-Anne Moss
1667883,Milo Gibson
1232548,Abigail Hawk
1107983,Martin Luther King Jr.
52057,Obba Babatundé
110380,Colin Powell

...

edges.csv:

source,target
2975,6384
2975,530
2975,1667883
2975,1232548
2975,1107983
2975,52057

...

然后将上面的文件导入到Argo Lite中:

 在dataset中,可以看到所有的node,并且可以通过排序或者手动的方式,调节想要展示的节点:

 对节点的大小,图像,标题都可以手动调整:

最方便的是,做好图之后,可以选择保存,或者公开发布你的snap shot:

 如下

 现在就可以把你做的graph分享出去了:

 Argo Lite: Interactive Graph Visualization in Your Browser!

操作非常简单,功能也明了,建议大家尝试一下。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值