来源:http://poj.org/problem?id=1236
题目大意:给出一个各个学校之间的单向连通图,任务A:求出要令所有学校都收到软件的最小接收学校数目;任务B:求出至少需要添加多少条边,令无论将软件发布到哪一个学校,每一个学校都可以接收到软件
思路:对单向图求强连通分量,缩点,对于缩点后的图:求出入度为0的缩点个数,这是任务A;求出入度为0和出度为0的缩点个数,取较大的数,这是任务B。
可能有人问,为什么任务A不是直接求出强连通分量的个数,而是求出入度为0的缩点数呢?因为一个缩点,若入度不为0,则它一定可以从其他缩点得到软件,而不需要发一份给它。对于任务B,则要求添加尽可能少的边,使图成为全连通图,假设有一缩点u,它的出度为0,若将软件发布到这个缩点,则一定不能使得所有学校都收到软件(当然,有一个例外,就是一开始的图就已经是全连通的)。我们需要做的是:将出度为0的缩点全部连接到入度为0的缩点,这样到最后一定可以使得图成为全连通图。因此,对于出度为0和入度为0的缩点个数,取较大的输出就是任务B了。
注意:当图一开始就是全连通的,应该输出:1 0
View Code
1 #include <iostream> 2 #include <vector> 3 using namespace std; 4 5 const int maxn=105; 6 vector <int> a[maxn]; 7 8 int n; 9 int real[maxn],low[maxn],stack[maxn],depth,total,top; 10 bool instack[maxn]; 11 int color[maxn]; 12 bool f1[maxn],f2[maxn]; 13 14 void dfs(int u) 15 { 16 int v; 17 real[u]=low[u]=++depth; 18 stack[++top]=u; 19 instack[u]=true; 20 for (int i=0;i<a[u].size();i++) 21 { 22 v=a[u][i]; 23 if (!real[v]) 24 { 25 dfs(v); 26 low[u]=min(low[u],low[v]); 27 } 28 else if (instack[v]) 29 low[u]=min(low[u],real[v]); 30 } 31 32 if (real[u]==low[u]) 33 { 34 total++; 35 while (stack[top+1]!=u) 36 { 37 v=stack[top--]; 38 color[v]=total; 39 instack[v]=false; 40 } 41 } 42 } 43 44 void tarjan() 45 { 46 memset(real,0,sizeof(real)); 47 memset(instack,false,sizeof(instack)); 48 memset(stack,0,sizeof(stack)); 49 depth=total=top=0; 50 for (int i=1;i<=n;i++) 51 if (!real[i]) 52 dfs(i); 53 } 54 55 void solve() 56 { 57 if (total==1) 58 { 59 cout<<"1"<<endl<<"0"<<endl; 60 return; 61 } 62 memset(f1,false,sizeof(f1)); 63 memset(f2,false,sizeof(f2)); 64 for (int i=1;i<=n;i++) 65 { 66 for (int j=0;j<a[i].size();j++) 67 if (color[i]!=color[a[i][j]]) 68 { 69 f1[color[i]]=true; 70 f2[color[a[i][j]]]=true; 71 } 72 } 73 int result1=0,result2=0; 74 for (int i=1;i<=total;i++) 75 { 76 if (!f2[i]) result1++; 77 if (!f1[i]) result2++; 78 } 79 cout<<result1<<endl<<max(result1,result2)<<endl; 80 } 81 82 int main() 83 { 84 cin>>n; 85 int m; 86 for (int i=1;i<=n;i++) 87 { 88 a[i].clear(); 89 cin>>m; 90 while (m!=0) 91 { 92 a[i].push_back(m); 93 cin>>m; 94 } 95 } 96 tarjan(); 97 solve(); 98 return 0; 99 }