FedAvg 代码的注释

关于FedAvg的代码架构学习

分别有data log models save utils 四个子目录

data目录

data目录下存放了数据集,fedavg用了2个分别是

CIFAR-10(10类的彩色图片)

每个类别6000张图片,共60000张图片
,其中50000张训练图片,10000张图片

MNIST(手写数字的黑白图片)

0-9的手写数字图片,其中60000张训练图片,10000张测试图片

log

存放集中式训练的损失函数随训练轮数变化的图片

在这里插入图片描述

models

此目录下有5个py源码文件,分别是Fed,Nets,test,Update

Fed.py

def FedAvg(w)
FedAvg函数实现将客户端的模型参数全部相加并求平均的功能

返回值为平均参数

Nets.py

有三个类分别是

class MLP(nn.Module):

使用库函数实现人工神经网络mlp,首先初始化父类模型,并实例化self对象,然后def forward(self,x)函数,向前传播,经过输入变为一维向量的处理函数-输入层-防止过拟合-激活函数-输出层

最终返回输出值

class CNNMnist(nn.Module):

实现卷积神经网络对mnist的处理,先实现父类函数,使用卷积提取特征再使用最大池化方法减少特征数据量,使用relu激活函数输出并使用正则项损减少过拟合。

class CNNCifar(nn.Module):

实现卷积神经网络对Cifar的处理,首先使用卷积提取特征,使用2*2的最大池化减少特征数据量,放入激活函数并到全连接层整理全局特征最终到输出层输出类别

test.py

实现打印训练过程中相关信息的功能,如打印交叉熵损失,平均损失,预测率等

Updata.py

实现了客户端训练的功能

class DatasetSplit(Dataset) 数据集分割类,实现构造子集的功能

class LocalUpdate(object): 本地训练更新类,实现本地训练的功能

save文件夹

用于存放联邦式训练,损失函数和训练轮数的关系

在这里插入图片描述

utils

有两个py文件,分别是options.py和sampling.py

options.py

写明超参数的py文件,例如训练轮数,数据集,batch大小,客户端数量,学习率等

sampling.py

实现了数据集合iid划分和non-iid划分

main_fed.py

主函数,首先根据数据集选择不同的数据处理和构建数据集合的方法

然后创建模型,调用nets.py自定义的模型

然后训练e轮次,在训练轮次中保存客户端参数,最终平均聚合更新到全局模型。

画出损失函数和训练轮数

测试

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值