Pandas
文章平均质量分 93
i阿极
数据分析优质创作者、华为云社区专家博主,专注于python爬虫、数据分析、机器学习,持续分享学习文章,感谢关注和支持。专栏《机器学习案例》感兴趣的小伙伴速速订阅,资源有对应数据可下载。
可:爬虫|期末作业|课程项目|商务合作
展开
-
【数据分析之道-Pandas(二)】DataFrame
Pandas DataFrame是一种二维标签化数据结构,可以将其看作一个电子表格或SQL表。每列可以有不同的数据类型(数值,字符串,布尔值等),也可以有行和列标签。原创 2023-04-26 20:23:16 · 1490 阅读 · 11 评论 -
【数据分析之道-Pandas(一)】Series操作
Series是一种一维数组结构,它由两个部分组成:索引和值。索引是一个标签数组,可以用来标识数据。值可以是任何类型的数据,例如整数、浮点数、字符串等。Series提供了类似于Numpy数组的操作,同时也支持类似于Python字典的操作。原创 2023-04-23 14:40:32 · 1813 阅读 · 8 评论 -
pandas——字符串处理【建议收藏】
cat() 拼接字符串、split()切片字符串、get() 获取指定位置的字符串、contains() 是否包含表达式,返回True或False、replace() 字符串替换、slice() 按字符串下标的开始结束位置切割字符串、count() 计算给定单词出现的次数、len() 计算字符串的长度、strip()去除前后的空白字符、lower() 全部小写、upper() 全部大写、index() 查找给定字符串的位原创 2023-02-13 11:25:00 · 2112 阅读 · 16 评论 -
pandas——groupby操作
在数据分析中,我们往往需要在将数据拆分,在每一个特定的组里进行运算。as_index:在groupby中使用的键是否成为新的dataframe中的索引,默认as_index=True。sort:对groupby分组后新的dataframe中索引进行排序,sort=True为升序,我们通过一个或者多个分类变量将数据拆分,然后分别在拆分以后的数据上进行需要的计算。squeeze :如果可能的话,减少返回类型的维数,否则返回一个一致的类型。pandas中的groupby提供了一个高效的数据的分组运算。原创 2023-02-12 14:50:33 · 9731 阅读 · 12 评论 -
Pandas——Series操作【建议收藏】
Series对象本质上是一个NumPy的数组,因此NumPy的数组处理函数可以直接对Series进行处理。Series的定义:Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。1.在pandas的Series中,会保留NumPy的数组操作(用布尔数组过滤数据,标量乘法,以及使用数学函数),并同时保持引用的使用。2.删:Series的drop()方法可以对Series进行删除操作,返回一个被删除后的Series,原来的Series不改变。原创 2023-02-11 20:31:39 · 7586 阅读 · 16 评论 -
pandas——plot()方法可视化
绘图方法允许除了默认的线图之外的一些绘图样式,这些方法可以通过plot()的关键字参数kind提供。1.编写代码,使用Series的plot绘制Series中数据的分布图。熟练掌握使用pandas中数据用plot方法绘制图。练习使用pandas中数据用plot方法绘制图。kde、density:绘制密度图。bar 、barh:绘制条形图。Python 3.6.0以上。scatter:绘制散点图。hist:绘制直方图。hexbin:棱形图。原创 2023-02-10 20:06:52 · 7204 阅读 · 8 评论 -
pandas——DataFrame基本操作(二)【建议收藏】
熟练掌握pandas中DataFrame的修改元素值、缺失值处理、合并操作的方法。concat合并、使用append方法合并、使用merge进行合并、使用join进行连接原创 2023-02-09 17:41:32 · 1189 阅读 · 4 评论 -
pandas——DataFrame基本操作(一)【建议收藏】
a.loc[‘one’,‘a’]与a.loc[[‘one’],[‘a’]]作用是一样的,不过前者只显示对应的值,而后者会显示对应的行和列标签。a.loc[[‘one’,‘two’],[‘a’,‘b’]] 表示选取’one’和’two’这两行以及columns为a,b的列;a1[a1[‘one’].isin([‘2’,‘3’])] 表显示满足条件:列one中的值包含’2’,'3’的所有行。a.x与a[‘x’]意思一样。a.loc[:,[‘a’,‘b’] ] 表示选取所有的行以及columns为a,b的列;原创 2023-02-08 18:17:34 · 2604 阅读 · 3 评论