【BZOJ3319】黑白树
Description
给定一棵树,边的颜色为黑或白,初始时全部为白色。维护两个操作:
1.查询u到根路径上的第一条黑色边的标号。
2.将u到v 路径上的所有边的颜色设为黑色。
Notice:这棵树的根节点为1
Input
第一行两个数n,m分别表示点数和操作数。
接下来n-? 1行,每行2个数u,v.表示一条u到v的边。
接下来m行,每行为以下格式:
1 v 表示第一个操作
2 v u 表示第二种操作
Output
对于每个询问,输出相应答案。如果不存在,输出0。
Sample Input
5 4
1 2
1 3
2 4
2 5
1 2
2 2 3
1 3
1 4
1 2
1 3
2 4
2 5
1 2
2 2 3
1 3
1 4
Sample Output
0
2
1
2
1
HINT
对于 100% 的数据:n,m<=10^6
题解:本题要用到两边并查集。先用并查集预处理出每条边第一次变黑的时间,然后时间倒流。如果这个点是白点,则将该点的并查集与其父亲的并查集合并;如果是黑点则不合并。这样,每个点所在的并查集的根节点的边就是路径上第一个黑边。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1000010;
int n,m,cnt;
int to[maxn<<1],next[maxn<<1],head[maxn],vis[maxn],f[maxn],v[maxn];
int dep[maxn],fa[maxn],son[maxn],top[maxn],siz[maxn],q[maxn],ans[maxn];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void add(int a,int b)
{
to[++cnt]=b,next[cnt]=head[a],head[a]=cnt;
}
void dfs1(int x)
{
siz[x]=1;
for(int i=head[x];i;i=next[i]) if(to[i]!=fa[x])
{
fa[to[i]]=x,dep[to[i]]=dep[x]+1,v[to[i]]=(i+1)>>1,dfs1(to[i]),siz[x]+=siz[to[i]];
if(siz[to[i]]>siz[son[x]]) son[x]=to[i];
}
}
void dfs2(int x,int tp)
{
top[x]=tp;
if(son[x]) dfs2(son[x],tp);
for(int i=head[x];i;i=next[i]) if(to[i]!=fa[x]&&to[i]!=son[x]) dfs2(to[i],to[i]);
}
int lca(int x,int y)
{
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]]) swap(x,y);
x=fa[top[x]];
}
if(dep[x]<dep[y]) return x;
return y;
}
int find(int x)
{
return (f[x]==x)?x:(f[x]=find(f[x]));
}
int main()
{
n=rd(),m=rd();
int i,j,a,b,c;
for(i=1;i<n;i++) a=rd(),b=rd(),add(a,b),add(b,a);
for(i=1;i<=n;i++) f[i]=i;
dep[1]=1,dfs1(1),dfs2(1,1);
memset(head,0,sizeof(head)),cnt=0;
for(i=1;i<=m;i++)
{
if(rd()==1) q[i]=rd();
else
{
a=rd(),b=rd(),c=lca(a,b);
a=find(a),b=find(b);
while(dep[a]>dep[c]) f[a]=find(fa[a]),add(i,a),vis[a]=1,a=f[a];
while(dep[b]>dep[c]) f[b]=find(fa[b]),add(i,b),vis[b]=1,b=f[b];
}
}
for(i=1;i<=n;i++) f[i]=!vis[i]?fa[i]:i;
for(i=m;i>=1;i--)
{
if(q[i]) ans[i]=v[find(q[i])];
else for(j=head[i];j;j=next[j]) f[to[j]]=find(fa[to[j]]);
}
for(i=1;i<=m;i++) if(q[i]) printf("%d\n",ans[i]);
return 0;
}