3319: 黑白树
Description
给定一棵树,边的颜色为黑或白,初始时全部为白色。维护两个操作:
1.查询u到根路径上的第一条黑色边的标号。
2.将u到v 路径上的所有边的颜色设为黑色。
Notice:这棵树的根节点为1
Input
第一行两个数n,m分别表示点数和操作数。
接下来n-? 1行,每行2个数u,v.表示一条u到v的边。
接下来m行,每行为以下格式:
1 v 表示第一个操作
2 v u 表示第二种操作
Output
对于每个询问,输出相应答案。如果不存在,输出0。
Sample Input
5 4
1 2
1 3
2 4
2 5
1 2
2 2 3
1 3
1 4
Sample Output
0
2
1
HINT
对于 100% 的数据:n,m<=10^6
【解题报告】
题解和思路来自http://blog.csdn.net/clover_hxy/article/details/72770374
刚刚看到这道题的时候非常蒙蔽,LCT?我不会啊,只好去看题解。
然后大概懂了。
我们首先用离线的思路来解决,依次染黑所有的边,将以黑边相邻的点合并到其中深度较小的点。(同时记录黑边变黑的时间)。
现在我们在将白边用并查集合并,这个并查集的代表元素就是这一堆白边所连接的点中深度最小的点。
然后我们将所有操作倒过来进行,如果是查询操作,直接找点所在集合的代表元素,代表元素与其父节点之间的边就是答案,(如果代表元素为它自己说明上面就是一条黑边)。如果是修改操作,就相当于把黑边染白,将是所有在当前操作中变黑的边的两端用并查集合并。
妙啊妙啊
代码如下:
/**************************************************************
Problem: 3319
User: onepointo
Language: C++
Result: Accepted
Time:8788 ms
Memory:99736 kb
****************************************************************/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 1000010
int n,m,cnt,head[N];
struct Edge{int to,nxt,c;}e[N<<1];
int fa[N],mark[N],deep[N],f[N],pd[N],pd1[N],ans[N];
struct data{int opt,x,y;}a[N],b[N];
void adde(int u,int v,int c)
{
e[++cnt].to=v;e[cnt].c=c;e[cnt].nxt=head[u];head[u]=cnt;
e[++cnt].to=u;e[cnt].c=c;e[cnt].nxt=head[v];head[v]=cnt;
}
void dfs(int u,int pre)
{
for(int i=head[u];~i;i=e[i].nxt)
{
int v=e[i].to,t=e[i].c;
if(v==pre) continue;
deep[v]=deep[u]+1;
a[t].x=u;a[t].y=v;
fa[v]=u;
dfs(v,u);
mark[v]=e[i].c;
}
}
int find(int x)
{
return (f[x]==x)?x:f[x]=find(f[x]);
}
void change(int x,int y,int opt)
{
x=find(x);y=find(y);
while(x!=y)
{
if(deep[x]<deep[y]) swap(x,y);
if(!pd[x]) f[x]=f[fa[x]],pd[x]=opt;
x=f[x];
}
}
void solve(int x,int y,int opt)
{
x=find(x);y=find(y);
while(x!=y)
{
if(deep[x]<deep[y]) swap(x,y);
if(pd[x]==opt) f[x]=f[fa[x]];
x=fa[x];
}
}
int main()
{
cnt=-1;
memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);
for(int i=1;i<n;++i)
{
int u,v;scanf("%d%d",&u,&v);
adde(u,v,i);
}
dfs(1,1);
for(int i=1;i<=n;++i) f[i]=i;
for(int i=1;i<=m;++i)
{
scanf("%d%d",&b[i].opt,&b[i].x);
if(b[i].opt==2)
{
scanf("%d",&b[i].y);
change(b[i].x,b[i].y,i);
}
}
for(int i=1;i<=n;++i) f[i]=i;
memcpy(pd1,pd,sizeof(pd));
// for(int i=1;i<=n;++i) pd1[i]=pd[i];
for(int i=2;i<=n;++i)
{
if(!pd1[i])
{
int t=mark[i];
int r1=find(a[t].x);
int r2=find(a[t].y);
f[r2]=r1;
}
}
int tot=0;
for(int i=m;i>=1;--i)
{
if(b[i].opt==1)
{
int r1=find(b[i].x);
ans[++tot]=mark[r1];
}
else solve(b[i].x,b[i].y,i);
}
for(int i=tot;i>=1;--i) printf("%d\n",ans[i]);
}