【BZOJ4520】[Cqoi2016]K远点对
Description
已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对。
Input
输入文件第一行为用空格隔开的两个整数 N, K。接下来 N 行,每行两个整数 X,Y,表示一个点的坐标。1 < = N < = 100000, 1 < = K < = 100, K < = N*(N−1)/2 , 0 < = X, Y < 2^31。
Output
输出文件第一行为一个整数,表示第 K 远点对的距离的平方(一定是个整数)。
Sample Input
10 5
0 0
0 1
1 0
1 1
2 0
2 1
1 2
0 2
3 0
3 1
0 0
0 1
1 0
1 1
2 0
2 1
1 2
0 2
3 0
3 1
Sample Output
9
题解:我们枚举每个点在kd-tree上查询,同时维护一个小根堆,一旦某个点离当前点的距离>堆顶,就将它加入堆并弹出堆顶,最后的堆顶就是答案。
由于每个点对都被算了两边,所以k应该*2。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#define rep for(int i=0;i<=1;i++)
#define x2(_) ((_)*(_))
using namespace std;
const int maxn=100010;
typedef long long ll;
struct kd
{
ll v[2],sm[2],sn[2];
int ls,rs;
ll & operator [] (int a) {return v[a];}
kd (){}
kd (ll a,ll b){v[0]=sm[0]=sn[0]=a,v[1]=sm[1]=sn[1]=b,ls=rs=0;}
}t[maxn];
priority_queue<ll> pq;
int n,m,D,root,now;
ll A,B;
bool cmp(kd a,kd b)
{
return (a[D]==b[D])?(a[D^1]<b[D^1]):(a[D]<b[D]);
}
void pushup(int x,int y)
{
rep t[x].sm[i]=max(t[x].sm[i],t[y].sm[i]),t[x].sn[i]=min(t[x].sn[i],t[y].sn[i]);
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int build(int l,int r,int d)
{
if(l>r) return 0;
int mid=l+r>>1;
D=d,nth_element(t+l,t+mid,t+r+1,cmp);
t[mid].ls=build(l,mid-1,d^1),t[mid].rs=build(mid+1,r,d^1);
if(t[mid].ls) pushup(mid,t[mid].ls);
if(t[mid].rs) pushup(mid,t[mid].rs);
return mid;
}
ll getdis(int x)
{
return max(x2(t[x].sm[0]-A),x2(t[x].sn[0]-A))+max(x2(t[x].sm[1]-B),x2(t[x].sn[1]-B));
}
void query(int x)
{
if(!x||getdis(x)<=-pq.top()) return ;
if(x!=now&&x2(t[x][0]-A)+x2(t[x][1]-B)>-pq.top()) pq.push(-x2(t[x][0]-A)-x2(t[x][1]-B)),pq.pop();
if(getdis(t[x].ls)>getdis(t[x].rs)) query(t[x].ls),query(t[x].rs);
else query(t[x].rs),query(t[x].ls);
}
int main()
{
n=rd(),m=rd();
int i,a,b;
for(i=1;i<=n;i++) a=rd(),b=rd(),t[i]=kd(a,b);
for(i=1;i<=2*m;i++) pq.push(0);
root=build(1,n,0);
for(i=1;i<=n;i++) now=i,A=t[i].v[0],B=t[i].v[1],query(root);
printf("%lld\n",-pq.top());
return 0;
}