[BZOJ4520][Cqoi2016]K远点对(KD-tree)

小根堆与树状结构优化
本文介绍了一种利用小根堆优化树状结构的方法,解决了每对点被重复计算的问题,并通过具体实例展示了如何避免走入空树,确保正确输出。

题目:

我是超链接

题解:

喵喵喵拿到题就开始冥思苦想啦
首先面临的问题就是每一对点都会被计算两次(x,y)&(y,x)
喵喵喵一开始还想用hash,后来发现直接把k*2不就行了orz
这里用了一个小根堆,这样才可以一下把最小的拿出来比较比较看看t不t出去
而且在这个地方

if (dl<dr)
    {
        if (dr>q.top()) ask(t[now].r);
        if (dl>q.top()) ask(t[now].l); 
    }

不能换成 if(dr>q.top() || q.size() < k))这样你的输出就充满了00000
不管是求最小是的INF还是求最大时的0,都是代表ta没有这个子树!!我们不能为了达到个数不择路径走到空树上去

代码:

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
using namespace std;
struct hh{int d[2],l,r,mn[2],mx[2];}t[100005];
int cmpd,k,x,y;
priority_queue<LL,vector<LL>,greater<LL> >q;
int cmp(const hh &a,const hh &b)
{
    return (a.d[cmpd]<b.d[cmpd] || (a.d[cmpd]==b.d[cmpd] && a.d[!cmpd]<b.d[!cmpd]));
}
void updata(int now)
{
    int lc=t[now].l,rc=t[now].r;
    if (lc)
    {
        t[now].mn[0]=min(t[now].mn[0],t[lc].mn[0]);
        t[now].mn[1]=min(t[now].mn[1],t[lc].mn[1]);
        t[now].mx[0]=max(t[now].mx[0],t[lc].mx[0]);
        t[now].mx[1]=max(t[now].mx[1],t[lc].mx[1]);
    }
    if (rc)
    {
        t[now].mn[0]=min(t[now].mn[0],t[rc].mn[0]);
        t[now].mn[1]=min(t[now].mn[1],t[rc].mn[1]);
        t[now].mx[0]=max(t[now].mx[0],t[rc].mx[0]);
        t[now].mx[1]=max(t[now].mx[1],t[rc].mx[1]);
    }
}
int build(int l,int r,int D)
{
    cmpd=D;
    int mid=(l+r)>>1;
    nth_element(t+l+1,t+mid+1,t+r+1,cmp);
    t[mid].mn[0]=t[mid].mx[0]=t[mid].d[0];
    t[mid].mn[1]=t[mid].mx[1]=t[mid].d[1];
    if (l!=mid) t[mid].l=build(l,mid-1,!D);
    if (r!=mid) t[mid].r=build(mid+1,r,!D);
    updata(mid); return mid;
}
LL pf(LL x){return (LL)x*(LL)x;}
LL dis(int now)
{
    LL d=0;
    d+=max(pf(t[now].mn[0]-x),pf(t[now].mx[0]-x));
    d+=max(pf(t[now].mn[1]-y),pf(t[now].mx[1]-y));
    return d;
}
void ask(int now)
{
    LL d0=0,dl,dr;
    d0=pf(t[now].d[0]-x)+pf(t[now].d[1]-y);
    if (q.size()<k) q.push(d0);
    else if (q.top()<d0) q.pop(),q.push(d0);
    if (t[now].l) dl=dis(t[now].l);else dl=0;
    if (t[now].r) dr=dis(t[now].r);else dr=0;
    if (dl<dr)
    {
        if (dr>q.top()) ask(t[now].r);
        if (dl>q.top()) ask(t[now].l); 
    }
    else 
    {
        if (dl>q.top()) ask(t[now].l);
        if (dr>q.top()) ask(t[now].r);
    }
}
int main()
{
    int n,root,i;
    scanf("%d%d",&n,&k);k*=2;
    for (i=1;i<=n;i++) scanf("%d%d",&t[i].d[0],&t[i].d[1]);
    root=build(1,n,0);
    for (int i=1;i<=n;i++) 
    {
        x=t[i].d[0]; y=t[i].d[1];
        ask(root);
    }
    printf("%lld",q.top());
}
内容概要:本文提出了一种基于融合鱼鹰算法和柯西变异的改进麻雀优化算法(OCSSA),用于优化变分模态分解(VMD)的参数,进而结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)构建OCSSA-VMD-CNN-BILSTM模型,实现对轴承故障的高【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)精度诊断。研究采用西储大学公开的轴承故障数据集进行实验验证,通过优化VMD的模态数和惩罚因子,有效提升了信号分解的准确性与稳定性,随后利用CNN提取故障特征,BiLSTM捕捉时间序列的深层依赖关系,最终实现故障类型的智能识别。该方法在提升故障诊断精度与鲁棒性方面表现出优越性能。; 适合人群:具备一定信号处理、机器学习基础,从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决传统VMD参数依赖人工经验选取的问题,实现参数自适应优化;②提升复杂工况下滚动轴承早期故障的识别准确率;③为智能制造与预测性维护提供可靠的技术支持。; 阅读建议:建议读者结合Matlab代码实现过程,深入理解OCSSA优化机制、VMD信号分解流程以及CNN-BiLSTM网络架构的设计逻辑,重点关注参数优化与故障分类的联动关系,并可通过更换数据集进一步验证模型泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值