【BZOJ2238】Mst 最小生成树+LCA+堆

【BZOJ2238】Mst

Description

给出一个 N个点 M条边的无向带权图,以及 Q个询问,每次询问在图中删掉一条边后图的最小生成树。(各询问间独立,每次询问不对之后的询问产生影响,即被删掉的边在下一条询问中依然存在)

Input

第一行两个正整数N,M(N<=50000,M<=100000)表示原图的顶点数和边数。
下面M行,每行三个整数X,Y,W描述了图的一条边(X,Y),其边权为W(W<=10000)。保证两点之间至多只有一条边。
接着一行一个正整数Q,表示询问数。(1<=Q<=100000)
下面Q行,每行一个询问,询问中包含一个正整数T,表示把编号为T的边删掉(边从1到M按输入顺序编号)。

Output

Q行,对于每个询问输出对应最小生成树的边权和的值,如果图不连通则输出“Not connected”

Sample Input

4 4
1 2 3
1 3 5
2 3 9
2 4 1
4
1
2
3
4

Sample Output

15
13
9
Not connected
样例解释:

数据规模:
10%的数据N,M,Q<=100。
另外30%的数据,N<=1000
100%的数据如题目。

题解:先求出最小生成树,如果删掉的是非树边,则不用管;如果删掉的是树边,则我们要用能覆盖它的,权值最小的非树边来替换它。这个可以用树剖+线段树维护,也可以离线+堆来搞。

方法是,对于非树边a-b,v,求出树上的lca为c,那么在a和b的堆中加入v,在c的vector中加入v,然后DFS一遍,将儿子节点的堆与父亲合并,合并时采用启发式合并。再将vector中记录的权值都在堆中删除掉即可。此外,本题的堆是可删除的堆,实现方法可以参见代码。

坑点:原图可能一开始就不连通。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn=50010;
int n,m,Q,sum,cnt;
struct edge
{
	int a,b,c,org;
}p[maxn<<1];
int fa[18][maxn],Log[maxn],dep[maxn],pos[maxn<<1],to[maxn<<1],next[maxn<<1],head[maxn],rt[maxn],ans[maxn],f[maxn];
int used[maxn<<1];
struct heap
{
	priority_queue<int> A,B;
	void pop()
	{
		while(!B.empty()&&A.top()==B.top())	A.pop(),B.pop();
		A.pop();
	}
	void erase(int x)	{B.push(-x);}
	void push(int x)	{A.push(-x);}
	int top()
	{
		while(!B.empty()&&A.top()==B.top())	A.pop(),B.pop();
		return -A.top();
	}
	int size()	{return A.size()-B.size();}
}q[maxn];
vector<int> v[maxn];
bool cmp(const edge &a,const edge &b)
{
	return a.c<b.c;
}
inline void add(int a,int b)
{
	to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
void dfs(int x)
{
	for(int i=head[x];i!=-1;i=next[i])	if(to[i]!=fa[0][x])	fa[0][to[i]]=x,dep[to[i]]=dep[x]+1,dfs(to[i]);
}
void dfs2(int x)
{
	for(int a,b,i=head[x];i!=-1;i=next[i])	if(to[i]!=fa[0][x])
	{
		dfs2(to[i]),a=rt[x],b=rt[to[i]];
		if(q[a].size()>q[b].size())	while(q[b].size())	q[a].push(q[b].top()),q[b].pop();
		else
		{
			rt[x]=rt[to[i]];
			while(q[a].size())	q[b].push(q[a].top()),q[a].pop();
		}
	}
	for(int i=0;i<(int)v[x].size();i++)	q[rt[x]].erase(v[x][i]),q[rt[x]].erase(v[x][i]);
	ans[x]=!q[rt[x]].size()?-1:q[rt[x]].top();
}
inline int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<'0'||gc>'9')	{if(gc=='-')f=-f;	gc=getchar();}
	while(gc>='0'&&gc<='9')	ret=ret*10+gc-'0',gc=getchar();
	return ret*f;
}
inline int lca(int a,int b)
{
	if(dep[a]<dep[b])	swap(a,b);
	for(int i=Log[dep[a]-dep[b]];i>=0;i--)	if(dep[fa[i][a]]>=dep[b])	a=fa[i][a];
	if(a==b)	return a;
	for(int i=Log[dep[a]];i>=0;i--)	if(fa[i][a]!=fa[i][b])	a=fa[i][a],b=fa[i][b];
	return fa[0][a];
}
int find(int x)
{
	return (f[x]==x)?x:(f[x]=find(f[x]));
}
int main()
{
	n=rd(),m=rd();
	int i,j,a,b,c;
	for(i=1;i<=m;i++)	p[i].a=rd(),p[i].b=rd(),p[i].c=rd(),p[i].org=i;
	for(i=1;i<=n;i++)	f[i]=rt[i]=i;
	sort(p+1,p+m+1,cmp);
	memset(head,-1,sizeof(head));
	for(i=1;i<=m;i++)
	{
		a=find(p[i].a),b=find(p[i].b),pos[p[i].org]=i;
		if(a!=b)	f[a]=b,add(p[i].a,p[i].b),add(p[i].b,p[i].a),sum+=p[i].c,used[i]=1;
	}
	if(cnt!=(n-1)<<1)
	{
		Q=rd();
		for(i=1;i<=Q;i++)	printf("Not connected\n");
		return 0;
	}
	dep[1]=1,dfs(1);
	for(i=2;i<=n;i++)	Log[i]=Log[i>>1]+1;
	for(j=1;(1<<j)<=n;j++)	for(i=1;i<=n;i++)	fa[j][i]=fa[j-1][fa[j-1][i]];
	for(i=1;i<=m;i++)	if(!used[i])
	{
		a=p[i].a,b=p[i].b,c=lca(a,b);
		q[a].push(p[i].c),q[b].push(p[i].c),v[c].push_back(p[i].c);
	}
	dfs2(1);
	Q=rd();
	for(i=1;i<=Q;i++)
	{
		a=pos[rd()];
		if(!used[a])	printf("%d\n",sum);
		else
		{
			b=p[a].a,c=p[a].b;
			if(dep[b]<dep[c])	b=c;	
			if(ans[b]==-1)	printf("Not connected\n");
			else	printf("%d\n",sum+ans[b]-p[a].c);
		}
	}
	return 0;
}//4 4 1 2 3  1 3 5  2 3 9  2 4 1  4  1  2  3  4

转载于:https://www.cnblogs.com/CQzhangyu/p/7605169.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值