[BZOJ2238]Mst

[BZOJ2238]Mst

题目大意:

给你一个\(n(n\le50000)\)个点,\(m(m\le10^5)\)条边的无向带权图。\(q(q\le10^5)\)次询问,每次询问去掉一条边后图能否连通,如果连通,求最小生成树。(询问互相独立)

思路:

首先求出最小生成树。对于非树边,去掉这条边对答案没有影响;对于树边,去掉这条边后就把原生成树分成两个不相交的连通块,新的最小生成树就是原树-该边边权+连接两个连通块的最小边。树链剖分+线段树维护即可。

时间复杂度\(\mathcal O((m+q)\log n)\)

源代码:

#include<cstdio>
#include<cctype>
#include<vector>
#include<climits>
#include<algorithm>
inline int getint() {
    register char ch;
    while(!isdigit(ch=getchar()));
    register int x=ch^'0';
    while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
    return x;
}
const int N=5e4+1,M=1e5+1;
int w[M];
struct Edge {
    int u,v,id;
    bool operator < (const Edge &rhs) const {
        return w[id]<w[rhs.id];
    }
};
Edge edge[M];
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
    e[u].push_back(v);
    e[v].push_back(u);
}
class DisjointSet {
    private:
        int anc[N],cnt;
        int find(const int &x) {
            return x==anc[x]?x:anc[x]=find(anc[x]);
        }
    public:
        void reset(const int &n) {
            cnt=n;
            for(register int i=1;i<=n;i++) anc[i]=i;
        }
        void merge(const int &x,const int &y) {
            anc[find(x)]=find(y);
            cnt--;
        }
        bool same(const int &x,const int &y) {
            return find(x)==find(y);
        }
        int size() const {
            return cnt;
        }
};
DisjointSet djs;
int dep[N],top[N],par[N],son[N],size[N],dfn[N];
void dfs(const int &x,const int &par) {
    size[x]=1;
    ::par[x]=par;
    dep[x]=dep[par]+1;
    for(unsigned i=0;i<e[x].size();i++) {
        const int &y=e[x][i];
        if(y==par) continue;
        dfs(y,x);
        size[x]+=size[y];
        if(size[y]>size[son[x]]) {
            son[x]=y;
        }
    }
}
void dfs(const int &x) {
    dfn[x]=++dfn[0];
    top[x]=x==son[par[x]]?top[par[x]]:x;
    if(son[x]!=0) dfs(son[x]);
    for(unsigned i=0;i<e[x].size();i++) {
        const int &y=e[x][i];
        if(y==par[x]||y==son[x]) continue;
        dfs(y);
    }
}
int pos[M];
class SegmentTree {
    #define _left <<1
    #define _right <<1|1
    #define mid ((b+e)>>1)
    private:
        int val[N<<2];
    public:
        void build(const int &p,const int &b,const int &e) {
            val[p]=INT_MAX;
            if(b==e) return;
            build(p _left,b,mid);
            build(p _right,mid+1,e);
        }
        void modify(const int &p,const int &b,const int &e,const int &l,const int &r,const int &v) {
            if(l>r||val[p]<=v) return;
            if(b==l&&e==r) {
                val[p]=std::min(val[p],v);
                return;
            }
            if(l<=mid) modify(p _left,b,mid,l,std::min(mid,r),v);
            if(r>mid) modify(p _right,mid+1,e,std::max(mid+1,l),r,v);
        }
        int query(const int &p,const int &b,const int &e,const int &x) const {
            int ret=val[p];
            if(b==e) return ret;
            if(x<=mid) ret=std::min(ret,query(p _left,b,mid,x));
            if(x>mid) ret=std::min(ret,query(p _right,mid+1,e,x));
            return ret;
        }
    #undef _left
    #undef _right
    #undef mid
};
SegmentTree sgt;
inline int lca(int x,int y) {
    while(top[x]!=top[y]) {
        if(dep[top[x]]<dep[top[y]]) std::swap(x,y);
        x=par[top[x]];
    }
    if(dep[x]<dep[y]) std::swap(x,y);
    return y;
}
inline void modify(int x,int y,const int &w) {
    const int z=lca(x,y);
    while(top[x]!=top[y]) {
        if(dep[top[x]]<dep[top[y]]) std::swap(x,y);
        sgt.modify(1,1,dfn[0],dfn[top[x]]+(top[x]==z),dfn[x],w);
        x=par[top[x]];
    }
    if(dep[x]<dep[y]) std::swap(x,y);
    sgt.modify(1,1,dfn[0],dfn[y]+(y==z),dfn[x],w);
}
int main() {
    const int n=getint(),m=getint();
    for(register int i=1;i<=m;i++) {
        edge[i].u=getint();
        edge[i].v=getint();
        w[edge[i].id=i]=getint();
    }
    std::sort(&edge[1],&edge[m]+1);
    int sum=0;
    djs.reset(n);
    for(register int i=1;i<=m;i++) {
        const int &u=edge[i].u,&v=edge[i].v;
        if(djs.same(u,v)) continue;
        add_edge(u,v);
        djs.merge(u,v);
        sum+=w[edge[i].id];
    }
    if(djs.size()!=1) {
        for(register int q=getint();q;q--) {
            puts("Not connected");
        }
        return 0;
    }
    dfs(1,0);
    dfs(1);
    djs.reset(n);
    sgt.build(1,1,n);
    for(register int i=1;i<=m;i++) {
        int u=edge[i].u,v=edge[i].v;
        if(djs.same(u,v)) {
            modify(u,v,w[edge[i].id]);
            continue;
        }
        djs.merge(u,v);
        if(dep[u]<dep[v]) std::swap(u,v);
        pos[edge[i].id]=dfn[u];
    }
    const int q=getint();
    for(register int i=0;i<q;i++) {
        const int x=getint();
        if(pos[x]==0) {
            printf("%d\n",sum);
            continue;
        }
        const int tmp=sgt.query(1,1,n,pos[x]);
        if(tmp==INT_MAX) {
            puts("Not connected");
            continue;
        }
        printf("%d\n",sum-w[x]+tmp);
    }
    return 0;
}

转载于:https://www.cnblogs.com/skylee03/p/9728424.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值