[BZOJ2238]Mst
题目大意:
给你一个\(n(n\le50000)\)个点,\(m(m\le10^5)\)条边的无向带权图。\(q(q\le10^5)\)次询问,每次询问去掉一条边后图能否连通,如果连通,求最小生成树。(询问互相独立)
思路:
首先求出最小生成树。对于非树边,去掉这条边对答案没有影响;对于树边,去掉这条边后就把原生成树分成两个不相交的连通块,新的最小生成树就是原树-该边边权+连接两个连通块的最小边。树链剖分+线段树维护即可。
时间复杂度\(\mathcal O((m+q)\log n)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<vector>
#include<climits>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=5e4+1,M=1e5+1;
int w[M];
struct Edge {
int u,v,id;
bool operator < (const Edge &rhs) const {
return w[id]<w[rhs.id];
}
};
Edge edge[M];
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
class DisjointSet {
private:
int anc[N],cnt;
int find(const int &x) {
return x==anc[x]?x:anc[x]=find(anc[x]);
}
public:
void reset(const int &n) {
cnt=n;
for(register int i=1;i<=n;i++) anc[i]=i;
}
void merge(const int &x,const int &y) {
anc[find(x)]=find(y);
cnt--;
}
bool same(const int &x,const int &y) {
return find(x)==find(y);
}
int size() const {
return cnt;
}
};
DisjointSet djs;
int dep[N],top[N],par[N],son[N],size[N],dfn[N];
void dfs(const int &x,const int &par) {
size[x]=1;
::par[x]=par;
dep[x]=dep[par]+1;
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(y==par) continue;
dfs(y,x);
size[x]+=size[y];
if(size[y]>size[son[x]]) {
son[x]=y;
}
}
}
void dfs(const int &x) {
dfn[x]=++dfn[0];
top[x]=x==son[par[x]]?top[par[x]]:x;
if(son[x]!=0) dfs(son[x]);
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(y==par[x]||y==son[x]) continue;
dfs(y);
}
}
int pos[M];
class SegmentTree {
#define _left <<1
#define _right <<1|1
#define mid ((b+e)>>1)
private:
int val[N<<2];
public:
void build(const int &p,const int &b,const int &e) {
val[p]=INT_MAX;
if(b==e) return;
build(p _left,b,mid);
build(p _right,mid+1,e);
}
void modify(const int &p,const int &b,const int &e,const int &l,const int &r,const int &v) {
if(l>r||val[p]<=v) return;
if(b==l&&e==r) {
val[p]=std::min(val[p],v);
return;
}
if(l<=mid) modify(p _left,b,mid,l,std::min(mid,r),v);
if(r>mid) modify(p _right,mid+1,e,std::max(mid+1,l),r,v);
}
int query(const int &p,const int &b,const int &e,const int &x) const {
int ret=val[p];
if(b==e) return ret;
if(x<=mid) ret=std::min(ret,query(p _left,b,mid,x));
if(x>mid) ret=std::min(ret,query(p _right,mid+1,e,x));
return ret;
}
#undef _left
#undef _right
#undef mid
};
SegmentTree sgt;
inline int lca(int x,int y) {
while(top[x]!=top[y]) {
if(dep[top[x]]<dep[top[y]]) std::swap(x,y);
x=par[top[x]];
}
if(dep[x]<dep[y]) std::swap(x,y);
return y;
}
inline void modify(int x,int y,const int &w) {
const int z=lca(x,y);
while(top[x]!=top[y]) {
if(dep[top[x]]<dep[top[y]]) std::swap(x,y);
sgt.modify(1,1,dfn[0],dfn[top[x]]+(top[x]==z),dfn[x],w);
x=par[top[x]];
}
if(dep[x]<dep[y]) std::swap(x,y);
sgt.modify(1,1,dfn[0],dfn[y]+(y==z),dfn[x],w);
}
int main() {
const int n=getint(),m=getint();
for(register int i=1;i<=m;i++) {
edge[i].u=getint();
edge[i].v=getint();
w[edge[i].id=i]=getint();
}
std::sort(&edge[1],&edge[m]+1);
int sum=0;
djs.reset(n);
for(register int i=1;i<=m;i++) {
const int &u=edge[i].u,&v=edge[i].v;
if(djs.same(u,v)) continue;
add_edge(u,v);
djs.merge(u,v);
sum+=w[edge[i].id];
}
if(djs.size()!=1) {
for(register int q=getint();q;q--) {
puts("Not connected");
}
return 0;
}
dfs(1,0);
dfs(1);
djs.reset(n);
sgt.build(1,1,n);
for(register int i=1;i<=m;i++) {
int u=edge[i].u,v=edge[i].v;
if(djs.same(u,v)) {
modify(u,v,w[edge[i].id]);
continue;
}
djs.merge(u,v);
if(dep[u]<dep[v]) std::swap(u,v);
pos[edge[i].id]=dfn[u];
}
const int q=getint();
for(register int i=0;i<q;i++) {
const int x=getint();
if(pos[x]==0) {
printf("%d\n",sum);
continue;
}
const int tmp=sgt.query(1,1,n,pos[x]);
if(tmp==INT_MAX) {
puts("Not connected");
continue;
}
printf("%d\n",sum-w[x]+tmp);
}
return 0;
}