【BZOJ2656】[Zjoi2012]数列(sequence) 高精度

【BZOJ2656】[Zjoi2012]数列(sequence)

Description

   小白和小蓝在一起上数学课,下课后老师留了一道作业,求下面这个数列的通项公式:

   小白作为一个数学爱好者,很快就计算出了这个数列的通项公式。于是,小白告诉小蓝自己已经做出来了,但为了防止小蓝抄作业,小白并不想把公式公布出来。于是小白为了向小蓝证明自己的确做出来了此题以达到其炫耀的目的,想出了一个绝妙的方法:即让小蓝说一个正整数N,小白则说出 的值,如果当N很大时小白仍能很快的说出正确答案,这就说明小白的确得到了公式。但这个方法有一个很大的漏洞:小蓝自己不会做,没法验证小白的答案是否正确。作为小蓝的好友,你能帮帮小蓝吗?

Input

      输入文件第一行有且只有一个正整数T,表示测试数据的组数。

     第2~T+1行,每行一个非负整数N。

Output

      输出文件共包含T行。

第i行应包含一个不含多余前缀0的数,它的值应等于An(n为输入数据中第i+1行被读入的整数)

【样例输入】

Sample Input

3
1
3
10

Sample Output

1
2
3

HINT

T<=20,N<=10^100

题解:一开始以为真的要推什么通项公式。。。

我们反过来推,发现第一次变成1-2个数,以后就一直是2个相邻的数。。。所以只需要实现高精度+1,-1,>>1,a+b,在逆着推的时候维护一下系数即可。

 

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int T;

struct Cbig
{
	int a[110],len;
	int & operator [] (int b) {return a[b];}
	Cbig() {memset(a,0,sizeof(a)),len=1;}
	Cbig div2()
	{
		Cbig b;
		b.len=len;
		for(int i=len;i>=1;i--)	b[i]+=a[i],b[i-1]=(b[i]&1)*10,b[i]>>=1;
		while(b.len>1&&!b[b.len])	b.len--;
		return b;
	}
	Cbig dec()
	{
		Cbig b;
		memcpy(b.a,a,sizeof(a)),b.len=len;
		b[1]--;
		for(int i=1;i<=len;i++)	if(b[i]<0)	b[i]+=10,b[i+1]--;
		while(b.len>1&&!b[b.len])	b.len--;
		return b;
	}
	Cbig inc()
	{
		Cbig b;
		memcpy(b.a,a,sizeof(a)),b.len=len;
		b[1]++;
		for(int i=1;i<=len;i++)	b[i+1]+=b[i]/10,b[i]%=10;
		while(b[b.len+1])	b.len++;
		return b;
	}
	Cbig operator + (Cbig b) const
	{
		Cbig c;
		c.len=max(len,b.len);
		for(int i=1;i<=c.len;i++)	c[i]+=a[i]+b[i],c[i+1]+=c[i]/10,c[i]%=10;
		while(c[c.len+1])	c.len++;
		return c;
	}
	void print()
	{
		for(int i=len;i>=1;i--)	printf("%d",a[i]);
		printf("\n");
		return ;
	}
}A,B,X,Y;
int n;
char str[110];
void work()
{
	scanf("%s",str),n=strlen(str);
	int i;
	A=B=X=Y=Cbig();
	A.len=n;
	for(i=0;i<n;i++)	A[n-i]=str[i]-'0';
	if(A.len==1&&A[1]==0)	{printf("0\n");	return ;}
	if(A.len==1&&A[1]==1)	{printf("1\n");	return ;}
	while(!(A[1]&1))	A=A.div2();
	if(A.len==1&&A[1]==1)	{printf("1\n");	return ;}
	B=A.inc(),A=A.dec(),A=A.div2(),B=B.div2(),X[1]=Y[1]=1;
	while(1)
	{
		if(A[1]&1)	Y=Y+X,A=A.dec(),A=A.div2(),B=B.div2();
		else	X=X+Y,B=B.inc(),A=A.div2(),B=B.div2();
		if(A.len==1&&A[1]==0)	break;
	}
	Y.print();
}
int main()
{
	scanf("%d",&T);
	while(T--)	work();
	return 0;
}//3 1 3 10

 

转载于:https://www.cnblogs.com/CQzhangyu/p/7787721.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值