最大权闭合子图(最小割) 最大权闭合子图(最大流最小割)•参考资料【1】最大权闭合子图•权闭合子图存在一个图的子图,使得子图中的所有点出度指向的点依旧在这个子图内,则此子图是闭合子图。在这个图中有8个闭合子图:∅,{3},{4},{2,4},{3,4},{1,3,4},{2,3,4},{1,2,3,4}•最大权闭合子图在一个图中每个点具有点权值,在他的所有闭合子...
CodeForces Goodbye 2017 传送门A - New Year and Counting Cards•题意有n张牌,正面有字母,反面有数字其中元音字母$a,e,o,i,u$的另一面必须对应$0,2,4,6,8$的偶数其他字母可以和任意数字对应问至少检查几次可以使这n张牌合法•思路由于偶数可以对应任何牌,但奇数必须对应不是元音的字母,所以所有的奇数要检查由于元音字母只可以对...
网络流建模汇总 •前言最近在看Edelweiss 的网络流建模汇总来学习网络流的建模技巧毕竟网络流的题难点就在于如何建图,其余大部分就是套路了于是也写下自己的想法和思路(虽然一直在借鉴大佬思路)•最大流 •POJ 1149 Pigs【题目大意】有 M 个猪圈,每个猪圈里初始时有若干头猪pig[i]。一开始所有猪圈都是关闭的。依次来了 N 个顾客,每个...
hdu 6579 Operation (在线线性基) 传送门•题意一个数组a有n个数 m个操作操作① 询问$[l,r]$区间的异或值操作② 在数组末尾追加一个数x,数组长度变为$n+1$其中$l,r$不直接给出,其中$l=l%n+1,r=r%n+1$其中$x=x^lastans$($lastens$为上一次询问的答案)•思路强制在线的线性基,在线线性基就是在离线的基础上多开一维具体思路跟C...
网络最大流之初见 •参考资料[1]:最大流入门[2]:算法讲堂[3]: Dinic优化•理解通俗理解最大流就是在某个时间点从源点S到终点T流过的水的最大值如图,最大流为9①线路 S->3->T:可以流过$min(5,3)=3$,然后$S->3$还有$5-3=2$的剩余②线路 S->1->2->T:可以流过$min(...
hdu 6851 Vacation(思维+贪心) 传送门•题意有编号0到n,n+1辆车排队过红绿灯,从0到n离交通灯线越来越近每辆车都有一个最大速度v,车身长度l,和离交通灯线的距离s,一辆车头到达线则说明这辆车已到达线如果一辆车前面没有紧邻着一辆车,那么这辆车可以以最大速度行驶如果前面紧邻着一辆车,则车头贴着前一辆车尾行驶,不能超车!即使过了交通灯线也不能超车!问第0辆也就是离线最远的一辆,到达线的...
CodeForces 1204 (#581 div 2) 传送门A.BowWow and the Timetable•题意给你一个二进制数,让你求小于这个数的所有4的幂的个数•思路第一反应是二进制与四进制转换(其实不用真正的转换 QwQ)由于二进制的两位对应四进制的一位所以可以得到四进制下的位数四进制的位数就是小于等于这个数的所有4的幂的个数,类比10进制下10的幂由于不能有等于,所以根据二进...
hdu 6852Path6(最短路+最小割) 传送门•题意有n个城市,标号1-n现花费最小的代价堵路使得从1号城市到n号城市的路径边长(注意只是变长不是最长)堵一条路的代价是这条路的权值•思路在堵路以前,从1到n的最小路径当然是最短路想要路径边长就要在最短路上动手脚把从1到n的最短路找出来形成一个最短路图,然后用最小的代价使得最短路图不连通也就是求这个最短路图的最小割那...
CodeForces 1213F (强联通分量分解+拓扑排序) 传送门•题意给你两个数组 p,q ,分别存放 1~n 的某个全排列;让你根据这两个数组构造一个字符串 S,要求:(1)$\forall i \in [1,n-1],S_{pi}\leq S _{pi+1} ,\forall i \in [1,n-1],S_{qi} \leq S _{qi+1}$(2)字符串 S 至少包含 k 个不同的小写字母;...
Codeforces Round #587 C. White Sheet(思维+计算几何) 传送门•题意先给一个白矩阵,再两个黑矩阵如果两个黑矩阵能把白矩阵包含,则输出NO否则输出YES•思路计算几何题还是思维题呢?想起了上初中高中做几何求面积的题这个就类似于那样包含的话分两种情况讨论,其他的不包含①白矩形在一个黑矩形内部 这种情况直接判断边界就可以②白矩形在两个黑矩形组合的图形内部首先这个情况的前提是两个黑...
VK Cup 2017 - Round 1 传送门A.Bear and Friendship Condition(思维or完全图判定)•题意给你n个人,m个朋友关系朋友是会传递的,若A B是朋友,A C是朋友,则必须有B C的朋友关系符合这个关系输出YES,否则输出NO•思路n个人,但凡是有朋友关系的,必定在同一个朋友圈内所以可以分成若干个朋友圈在一个朋友圈内部,若符合条件肯定是互...
[数论] 求逆元 逆元•何为逆元方程ax≡1(mod p),的解称为a关于模p的逆,当gcd(a,p)==1(即a,p互质)时,方程有唯一解,否则无解。逆元有对称性,x是a关于b的逆元,那a也是x关于b的逆元。线性递推求逆元线性求从1到n的$mod \ p$ 的逆元设$p=ki+r \ (r<i<p,i>1)$ ①可以得到$k=\lf...
2019 年百度之星·程序设计大赛 - 初赛一 传送门[1]hdu[2]bestcoderB.Game(贪心+思维)•题意一步可以走一个或者两个,求依次进入n个区间[li,ri]的最少步数•思路就当前位置cur来说,1)如果下一个任务的区间包括当前位置,那就可以不动2)如果下一个任务区间在当前位置左边,那就向下一个的左边界移动 ①如果正好可以全走两个格子的话,就在此位置 ...
CodeForces 1096D(线性dp) 传送门•题意给出一个长度为n的字符串s,对于每个$s_{i}$有$a_{i}$的价值让你删除最小的价值,使得字符串中不存在$hard$这个子序列•思路设dp[1]是不存在以$h$为前缀的最小代价dp[2]是不存在以$ha$为前缀,也就是不存在$h$或者不存在$a$或者不存在$ha$的最小代价同理,dp[3]是不存在以$har$为前缀的最小代价,dp...
2019牛客暑期多校训练营(第九场) B.Quadratic equation(二次剩余)•题意给定$p=1000000007$有两个数x,y,其中$x\leqslant y \leqslant p$$x + y \equiv b(mod \ p)$$x \times y \equiv c (mod \ p)$求 x,y的值...
poj2826 An Easy Problem?!(计算几何) 传送门•题意两根木块组成一个槽,给定两个木块的两个端点雨水竖直下落,问槽里能装多少雨水,•思路找不能收集到雨水的情况我们令线段较高的点为s点,较低的点为e点①两条木块没有交点②平行或重合③至少有一条木块水平(雨水会滑落)④形成覆盖,如"$\wedge$","人",还有比较难想的上边长下边短的情况其中形成"$\wedge$...
线性基 •参考资料[1]:算法 | 线性基学习笔记[2]:线性基学习笔记•理解实数线性基就是n维空间的一个基底,求线性基就是求他的基底,也就是矩阵的最大线性无关组可以用高斯消元来求。异或线性基其实就是把一个数转化成二进制转化成二进制后,最多的二进制位数就相当于他的...
螺旋矩阵O(1)根据坐标求值 传送门洛谷2239•题意从矩阵的左上角(第11行第11列)出发,初始时向右移动;如果前方是未曾经过的格子,则继续前进,否则右转;重复上述操作直至经过矩阵中所有格子。根据经过顺序,在格子中依次填入$1,2,3...n$构成一个螺旋矩阵现给出矩阵大小$n$以及$i$和$j$,请你求出该矩阵中$(i,j)$的数是多少。•思路这里主要是记录一下$...
2019 年百度之星·程序设计大赛 - 初赛二 传送门: [1]:HDU [2]:bestcoderB.度度熊与排列(思维)•题意 有一个数组 p,p 中包含的数为 1~m 的全排列,一个含 m 个字符的串 s; 在 s 上有一个操作,对于 s 中的第 i 个位置的字符,放到 p[ i ] 位置,构成一个新串 t; 即si=tpisi=tpi; 给你 2n 个串,每两个串为一组,前一个...
hdu 2454 Degree Sequence of Graph G(可简单图化判定) 传送门•Havel-Hakimi定理:给定一个非负整数序列{d1,d2,...dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化。进一步,若图为简单图,则称此序列可简单图化。定理描述:由非负整数组成的有限非递增序列,S={d1,d2,d3...dn},当且仅当S1={d2-1,d3-1...d(d1+1),d(d1+2)......d...
2019牛客暑期多校训练营(第八场) 传送门B.Beauty Values (dp)•题意给你一个序列 a,求序列 a 的任意一个区间 [l,r] 中,元素不同的个数的加和;•思路定义 dp[ i ] 表示以 i 为结尾的所有区间所包含的元素不同的数的个数; 即$dp[i]=\sum_{j=1}^{j <= i}f\{j,i\}$,$f\{j,i\}$指的是[ j , i ]区间...
2019牛客暑期多校训练营(第六场) 传送门A.Garbage Classification(阅读理解)•题意给你一个由小写字母组成的字符串然后给26个字母所对应的h,d,w,代表垃圾的有害性,干湿性如果所有有害性的字母的总和>=总字母数的25%则是有害垃圾如果所有有害性的字母的总和<=总字母数的10%则是可回收垃圾如果干性字母的总和>=2倍的湿性垃圾字母则是干垃圾否则是...
2019牛客暑期多校训练营(第五场) B.generator 1(矩阵快速幂)•题意已知$f_{i}=af_{i-1}+bf_{i-2}$; 输入 f0,f1,a,b,n,mod; 求 fn%mod ;•思路首先将递推式转化为矩阵乘法表达式: $\left( \begin{array}{cc} f_{i} \\ f_{i-1} \end{array}\right)=\le...
2019牛客暑期多校训练营(第四场) 传送门A.meeting(树的直径)•题意 n给城市有n-1条路相连, 每两个城市之间的道路花费为1 有k个人在k个城市, 问这k个人聚集在同一个城市的最小花费•思路•代码 1 #include<bits/stdc++.h> 2 using namespace std; 3 const ...
CodeForces 906D (欧拉降幂) Power Tower•题意求$w_{l}^{w_{l+1}^{w_{l+2}^{w_{l+3}^{w_{l+4}^{w_{l+5}^{...^{w_{r}}}}}}}}$ 对m取模的值•思路跟这两个题差不多上帝与集合正确用法 super_log区别在于①个数变成范围,不过也是一层一层递归,直到最后只有一层返回$w_{r}\ or\ \varphi...
洛谷4139 bzoj 3884 上帝与集合的正确用法 传送门•题意求$2^{2^{2^{2^{2^{2^{...^{2}}}}}}}$ (无穷个2) 对p取模的值•思路设答案为f(p)$2^{2^{2^{2^{2^{2^{...^{2}}}}}}}\%p$$=2^{(2^{2^{2^{2^{2^{...^{2}}}}}}\%\varphi(p)+ \varphi(p))}\%p$$=2^{(2^{2^...
The Preliminary Contest for ICPC Asia Nanjing 2019ICPC南京网络赛 B.super_log (欧拉降幂)•题意定一个一个运算log*,迭代表达式为给定一个a,b计算直到迭代结果>=b时,最小的x,输出对m取余后的值•思路$log*_{a}(a^{a})=1+log*_{a}(a)$ ①$log*_{a}(a)=1+log*_{a}(log_{a}(a))$ ②$log*_{a}(...
主席树之初见 •何为主席树 图1主席树的构造如图,以前序遍历的方式编号,叶子表示1到n因为叶子是1到n,就有了左子树总是小于右子树的性质除叶子外的节点记录的是区间sum代表这个节点的叶子有多少个数如图 区间[2,2]有1个数,区间[3,3]有1个数所以区间[1,2]有1个数,区间[3,4]有2个数,区间[1,4]有3个数•性质左...
Codeforces Round #554 (Div. 2) C. Neko does Maths (数论 GCD(a,b) = GCD(a,b-a)) 传送门•题意 给出两个正整数 a,b; 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k;•思路时隔很久,又重新做这个题温故果然可以知新❤重要知识点GCD(a,b)=GCD(a,b-a)=GCD(b,b-a) (b>a)证明:设GCD(a,b)=c 则a%c=0,b%c...
2019牛客暑期多校训练营(第三场) 传送门B.Crazy Binary String(前缀和)•题意 给你一个只包含 0,1 的串 s; 求满足 0 与 1 的个数相同的子串和子序列; 输出这两个串的最大长度;•思路找01个数相同的子串,类似于这个(A题),(话说比那个简单有没有根据前缀和求增量,如果增量相同的话,那这段区间里01个数就相同,然后每次取最大的ans找01...
Codeforces Round #486 (Div. 3) C "Equal Sums" (map+pair<>) 传送门•题意给k个数列,从中k个数列中找出任意2个数列 i ,j使得数列i删除第x个数,和数列j删除第y个数的和相等若存在,输出 i ,x 和 j,y•思路每个数列之间的联系为数列的和之间的差det如果开二维数组记录每个数列之间的det的话,显然是不可行的_(:з」∠)_这里用map<x ,pair<i ,j > >m...
悬线法 悬线法•用途针对求给定矩阵中满足某条件的极大矩阵,比如“面积最大的长方形、正方形”“周长最长的矩形等等”。•思路悬线法是一条竖线,这条竖线要满足上端点在整个矩形上边界或者是一个障碍点。然后以这条悬线进行左右移动,直到移至障碍点或者是矩阵边界,进而确定这条悬线所在的极大矩阵。也就是说,我们要针对矩阵中每个点进行求极大矩阵的操作,所以我们需要Left[]数组...
2019牛客暑期多校训练营(第二场) 传送门F.Partition priblem(DFS)•题意 有 2n 个人,任意两个人之间都存在竞争值; 定义 v[ i ][ j ] 表示 i 与 j 的竞争值为 v[ i ][ j ]; 将这 2n 个人划分成两组,每组有 n 人,组内的成员之间不存在竞争; 竞争值为(i,j不同组)求竞争值最大是多少•思路先用...
HDU 6709“Fishing Master”(贪心+优先级队列) 传送门•参考资料 2019CCPC网络选拔赛 H.Fishing Master(思维+贪心)•题意 池塘里有 n 条鱼,捕捉一条鱼需要花费固定的 k 时间; 你有一个锅,每次只能煮一条鱼,其中煮熟第 i 条鱼至少需要 ti时间; 你在煮鱼的时候可以选择去钓一条鱼,也可也选择不钓; 但是,一旦你决定钓鱼,就必须花费 k 时间调到一条鱼;...
2019牛客暑期多校训练营(第一场) 传送门A.Equivalent Prefixes•题意有两个数组a,b,现给一个定义,等价:在区间[L,R]上的任意一个区间内,ai,bi最小值的位置相等,则称这两个数组是等价的给你两个数组a,b,求a,b存在[1,R]是等价的最大的R•思路利用单调栈,求出每个ai,bi是最小值的左区间当左区间不相同时,即可得到答案•栗子a...
[数论]拓展中国剩余定理 拓展中国剩余定理•拓展中国剩余定理拓展中国剩余定理是用来解同余方程$\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2}\left( mod\ m_{2}\right) \\ \ldots \\ x\equiv c_n\left( mod\ m_n\right) \end{cases}$...
windows10家庭版升级为企业版 windows10家庭版升级为企业版 之前,小编的电脑是windows10家庭版的,但是自己是从事it行业的,经常会对电脑做修改,某天,我想要往hosts文件里面添加几行数据,但是我发现写完之后无法保存,系统提示没有权限,自己本来就是管理员,为什么没有权限,于是我上网找了一些资料,说家庭版是最低的版本,里面有很多功能都被做了限制,甚至很多功能都不提供,于是,我将他升级为企业版的...
SPI总线的原理与Verilog实现 转载地址:https://www.cnblogs.com/liujinggang/p/9609739.html一、 软件平台与硬件平台 软件平台: 1、操作系统:Windows-8.1 2、开发套件:ISE14.7 3、仿真工具:ModelSim-10.4-SE 硬件平台: 1、 FPGA型号:Xilinx公司的XC6...
.NET Core 中如何在运行中加载 Controller ? https://www.codetd.com/article/461093转载于:https://www.cnblogs.com/imtudou/p/11424368.html
IOS 浏览器端overflow:scroll overflow:auto元素无法滑动bug解决方法整理 导致 iframe 里面的内容会把我下面的两个按钮一直怼到最下面,加载的时候按钮是有的 等到 iframe 里的内容加载完成后 那两个按钮就不显示了解决方法:由于我在iframe 标签外加了的div上加了margin-top:3%;height:45%;样式,所以需要在加上overflow:hidden;关键代码: <div style="margin-t...
JS 获取URL 后面的参数 function GetRequest() { var url = location.search; //获取url中"?"符后的字串 var theRequest = new Object(); if (url.indexOf("?") != -1) { var str = u...
特殊类型日期转换 DateTime.ParseExact() string s, format; s = "Fri Feb 24 00:00:00 CST 2012"; format = "ddd MMM dd HH:mm:ss CST yyyy"; s = "Jul 23 04:00PM EDT"; format = "MMM...
FindData_查找数据库中所有相关的字符 Create PROCEDURE [dbo].[P_SYSTEM_FindData]( @value VARCHAR(1024)) ASBEGIN -- SET NOCOUNT ON added to prevent extra result sets from -- interfering with SELECT statements....
Firefox下代码触发a标签的click事件无效 通过一次导出功能是让自己如何一步一步掉坑最后又是怎么爬起来的在页面中通过document.createElement('a');创建一个a标签,然后给a标签的href属性赋url,通过代码触发a标签的click事件请求后台,在Chrome浏览器中请求正常,但是在Firefox中始终无效,debugger发现代码也走到了a.click()方法,但是就是没反应。代码如下:$.ajax({...
【CHARINDEX】先按STATIC_VALUE排序 在按R_RECORD_CREATE_DATE排序 SELECT STATIC_ID,STATIC_CD,STATIC_VALUE,STATIC_VALUE_EN from [dbo].[T_COMMON_STATIC] where TYPE_CD='ItemClass' and COMPANY_GUID='000018' and R_RECORD_STATUS= 1 order by CHARINDEX ...
删除所有的视图,存储过程 ---------------------删除所有的视图-------------------use fkbmvcultimateGOdeclare @sql varchar(8000)while (select count(*) from sysobjects where type='V')>0beginSELECT @sql='drop view ' + name...
游标 游标实例DECLARE @LegalUnitID as varchar(100), @ViewID as varchar(100) declare my_cursor cursor for select LegalUnitID,ViewID from T_TEMPLATE_VIEW group by LegalUnitID,ViewID -...
SQL where 1=1 的详细解释 ```SQLhttp://www.cnblogs.com/qcq0703/p/9099199.htmlselect * from user select * from user where 1=1--这两个 句子执行结果是一样一样的。而sql注入就是利用了这个原理 来进行破坏。比如:select * from user where id='1000'--如果允...
常用sql收藏 新增字段IsCheckInvoice Alter table T_LegalUnit add IsCheckInvoice bitUPDATE T_LegalUniT SET IsCheckInvoice=1 WHERE LegalUnitID='000010' SELECT *FROM T_LegalUnit WHERE IsCheckInvoice=11.查询表中重...
EF 执行存储过程方法 EF 执行存储过程方法:SqlParameter[] parms = new SqlParameter[] { new SqlParameter("@Detail_Item_ID",model.DETAIL_ITEM_ID), SqlParameter("@Detail_Item_ID1",model.DETAIL_ITEM_ID),};int n = db...
Sql 行转列 STUFF SELECT DISTINCT BizID ,STUFF( ( SELECT ',' + ApproveName FROM T_Common_ApproveNode WHERE BizID = A.BizID FOR XML PATH('') ) ,1 ,1 ,'' ) AS ApproveNa...
存储过程: 查询返回输出参数 declare @strReturn varchar(max)exec Proc_Fosun_Pay_Tran2WaitPayment 874302,15,@strReturn OUTPUTselect @strReturndeclare @BillID varchar(max)declare @Result varchar(max)exec UP_SYS_Get...
SQLServer 查看存储过程执行次数的方法 selectdb_name(st.dbid) as database_name,object_name(st.objectid) as name,p.size_in_bytes / 1024 as size_in_kb,p.usecounts,st.textfrom sys.dm_exec_cached_plans pcross apply sys.dm_exec_sql...
C#中读取和解析JSON文件? public void LoadJson(){ using (StreamReader r = new StreamReader("file.json")) { string json = r.ReadToEnd(); List<Item> items = JsonConvert.DeserializeObject<Li...
Substring() 截取 stockInfo.Code = str[0].Substring(str[0].IndexOf("_str_"), str[0].IndexOf("=") - str[0].IndexOf("_str_")).Replace("_str_","");//股票编码--去掉最后一个字符串appendStr.Substring(0, appendStr.Length-1)--...
string.Join()用法 string strTripID = string.Join(",", model.TripList.Select(s => "'" + s.TripID + "'")); var togetherList = itogetheremployeeservice.GetTogetherEmployee(strTripID); public List<T_TO...
从List分组后重新组织数据 ///从List分组后从重组织数据var res = result.GroupBy(s => new{ s.LegalUnitID, s.TYPE_CD, s.TYPE_NAME, s.TYPE_NAME_EN, s.BILLTYPE, s.BasicColor }).ToList();foreach (var re...
钉钉小程序----使用阿里的F2图表 在钉钉小程序中使用F2的图表遇见很多问题不能点击或者点击错乱的问题还没有解决,因为我解决不了。。。。。。。。。。。。。。。。。。。。。。。。。。。----------------------------------------------------------------------------------------------------------------------...
数组对象根据某个属性取出重复的个数 1.对数组对象,根据某个对象计算重复的个数例如:getData() { let arrData = [{ 'a': '你', 'b': '1', 'c': '他' }, { 'a': '他', 'b': '2', 'c': "它" }, { 'a': '你', 'b': '3',...
钉钉小程序------子组件监测父组件的数据更新 把要监听的数据放在app.js中,在子组件中使用了定时器去监听app.js里面的数据改变,网上有很多其他人的方法,很不错,但是我不大看得懂,自己做的这个用了定时器,可能性能就不是那么好了。。。1.在app.js中存放数据,并且获取父组件改变过的值。App({ globaldata: { lastRelVal: '', // 需要监听的数据 }, /...
钉钉小程序数据传递——子传父,父传子 在父组件js文件中:Page({ data: { propData: '', }, // 接收子组件传递过来的数据 onChange(data) { console.log(data) }})在父组件axml文件中使用子组件:<daily propData="{{propData}}" onChanges="...
钉钉小程序封装请求地址 1.在最外层的app.js中App({ globaldata: { serverurl:'实际地址', // serverurl: 'http://172.16.1.47:7001', authCode: '', }, // 封装网络请求 https(httpstype, url, data) { dd.showLo...
vue防重复点击(指令实现) 快速点击按钮会重复多次调用接口,防止出现这样的情况全局定义,方便调用新建plugins.jsexport default { install (Vue) { // 防重复点击(指令实现) Vue.directive('preventReClick', { inserted (el, binding) { el.ad...
常用面试题(对应的知识点) 一、什么时候适合用computed,什么时候适合用watch1、computed属性的结果会被缓存,除非依赖的响应式属性变化才会重新计算。不可以在data中定义和赋值2、watch⑴监听data属性中数据的变化⑵监听路由router的变化⑶进行深度监听,监听对象的变化<script> export default { data ...
vue项目默认IE以最高级别打开 只需要在index.html加入<meta http-equiv="X-UA-Compatible" content="IE=Edge">转载于:https://www.cnblogs.com/adbg/p/11224263.html
es索引介绍 1、索引引擎&图书类比1、索引引擎 正排索引:文档id到文档内容和单词的的映射关系(唯一性) 倒排索引:单词到文档id的关系(范围性)2、图书 正排索引:目录页 倒排索引:附录的索引页2、正排索引&倒排索引图如上图左边的是正排索引,通过文档的id如查找文档的内容右边的是倒排索引,通过单词统计次数以及文档的...
postgresql目录 1、postgresql10.5安装2、postgresql语句3、postgresql后期给开发建表的权限问题转载于:https://www.cnblogs.com/charon2/p/11328306.html
postgresql后期给开发建表的权限问题 1、切换到指定数据库\c axyh_360p_hunan_mobile_security_manageView Code2、回收权限1 revoke connect on database axyh_360p_hunan_mobile_security_manage from public;回收权限3、设置授权后的权限grant对以及在...
mysql目录 1、数据库中删除语句Drop、Delete、Truncate的相同点和不同点的比较(举例说明)2、mysql权限问题3、修改数据库的库名字4、mysql之grant权限说明5、mysql基础安全6、常用非关系型数据库产品介绍7、MySQL 主主配置8、MySQL主从配置9、mysql容灾备份脚本10、mysql的所有权限转载于:https://w...
数据库中删除语句Drop、Delete、Truncate的相同点和不同点的比较(举例说明) 1、数据库删除语句的分别介绍:Delete:用于删除表中的行(注:可以删除某一行;也可以在不删除表的情况下(即意味着表的结构、属性、索引完整)删除所有行) 语法:删除某一行:Delete From 表名称 Where 列名称=值 删除所有行: Delete From 表名称 或 Delete * From 表名称...
nginx配置文件 1、顶置配置#定义 Nginx 运行的用户和用户组user nginx; #进程文件pid /var/run/nginx.pid; #错误日志位置和级别,debug、info、notice、warn、error、criterror_log /var/log/nginx/error.log warn; #Nginx worker 的进程数,一般...
hadoop3伪分布式安装 一、安装hadoop1、伪分布式模式有namenode,datanode,resoucrcemanager,nodemanager等进程,这些进程运行在同一台服务器上2、ssh免密码连接执行命令:ssh-keygen -t rsa一路回车即可复制秘钥到本地: cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys...
mysql的所有权限 mysql包含29个权限usage连接登陆权限,建立一个用户,就会自动授予其usage权限,该权限只能用于数据库的登陆,不能执行任何操作,且usage权限不能被回收,也即revoke用户并不能删除用户filefile不给,有严重的安全隐患supersuper不给,有严重的安全隐患...
postgresql语句 1、创建数据库[postgres@database2019030517 ~]$ CREATE DATABASE database_name;2、删除数据库[postgres@database2019030517 ~]$ drop database database_name;3、连接指定数据库...
postgresql10.5安装 1.下载源码安装包wget https://ftp.postgresql.org/pub/source/v10.5/postgresql-10.5.tar.gz2.创建pg的用户主、组[root@test2019030517 postgresql-10.5]# useradd postgres[root@test201903...
使用PYTHON统计项目代码行数 目录 一 使用PYTHON统计项目代码行数 二 应用实例 注:原创不易,转载请务必注明原作者和出处,感谢支持!一 使用PYTHON统计项目代码行数遇到一个非常小的需求:统计一个项目里头的各类源代码共有多少行。像这种小需求,一个简单的shell脚本就能够完成的。但是我不会shell ヾ...
在Ubuntu 16.04 LTS下编译安装OpenCV 4.1.1 目录 一 安装前的准备 二 编译并安装OpenCV 4.1.1 注:原创不易,转载请务必注明原作者和出处,感谢支持!OpenCV目前(2019-8-1)的最新版本为4.1.1。本文将介绍如何在Ubuntu 16.04 LTS下编译安装最新的OpenCV 4.1.1版本以及4.1.1对应...
第2讲 初识SLAM 目录 一 视觉SLAM中的传感器 二 经典视觉SLAM框架 三 SLAM问题的数学表述 注:原创不易,转载请务必注明原作者和出处,感谢支持!本讲主要内容:(1) 视觉SLAM中的传感器(2) 经典视觉SLAM框架(3) SLAM问题的数学表述一 视觉SLAM中的...
因OpenCV版本不一致所引发的报错 目录 一 因OpenCV版本不一致所引发的报错 注:原创不易,转载请务必注明原作者和出处,感谢支持!一 因OpenCV版本不一致所引发的报错今天遇到了一个很有意思的报错。事情是这样的, 在编译《视觉SLAM十四讲》第12章的一个程序时,编译器报了“未定义的引用”的错误。该程序使用了DBoW3这个库...
图像的掩膜操作 [TOC]注:原创不易,转载请务必注明原作者和出处,感谢支持!所涉及的APIvoid cv::filter2D( InputArray src, // 输入图像 OutputArray dst, // 输出图像 int ddepth, // 输出图像深度 InputArray kernel, // 掩膜矩阵(核) ...
invalid new-expression of abstract class type 'CurveFittingEdge' 目录 一 报错原因 注:原创不易,转载请务必注明原作者和出处,感谢支持!一 报错原因今天遇到了一个之前从未遇到的报错:error: invalid new-expression of abstract class type 'CurveFittingEdge'CurveFittingEdge *...
第1讲 前言 目录 一 视觉SLAM 注:原创不易,转载请务必注明原作者和出处,感谢支持!一 视觉SLAM什么是视觉SLAM?SLAM是Simultaneous Localization and Mapping的缩写,中文译作“同时定位与地图构建”。它是指搭载特定传感器的主体(比如扫地机器人,无人机,无人驾驶汽...
提升图像对比度和亮度 目录 一 提升图像对比度和亮度 二 代码实现 三 实现效果 注:原创不易,转载请务必注明原作者和出处,感谢支持!一 提升图像对比度和亮度一般来说图像的变换可以分成以下两类:(1)像素变换在像素变换中,仅仅根据输入的像素值(有时可能加上某些全局信息或者参数)来计算相...
图像的线性混合 [TOC]注:原创不易,转载请务必注明原作者和出处,感谢支持!一 图像的线性混合什么是图像的线性混合(linear blending)?如下面的公式所示。所谓的图像线性混合是指对于输入的两张图像$I_0$和$I_1$,取它们相同位置处的像素值进行线性相加,然后将结果赋值给目标图像相同位置处的像素。其中参数$\alpha$控制了两张图片在目标图像中的权重。\[g(x) = ...
图像模糊 目录 一 什么是图像模糊 二 图像模糊原理与实现 三 参考文献 注:原创不易,转载请务必注明原作者和出处,感谢支持!一 什么是图像模糊图像模糊是图像处理中最简单和常用的操作之一,其主要目的之一是给图像预处理的时候降低图像噪声。比如,在大目标提取之前去除图像中的一些琐碎...
在图像中绘制基本形状和文字 目录 一 基本形状的绘制 二 随机数 三 绘制文字 注:原创不易,转载请务必注明原作者和出处,感谢支持!一 基本形状的绘制本文的内容和数字图像处理的关系不大,主要是关于OpenCV提供的在图像中绘制基本形状和文字的相关API。OpenCV中的两种基本数据结构Poin...
[视频教程] 使用composer安装使用thinkphp6.0框架 安装composer -vvv的参数是表示展示安装进度,测试时使用其他参数安装失败,一直卡着不动curl -vvv https://getcomposer.org/installer | phpmv composer.phar /usr/local/bin/composer先安装下git,才能clone下github上的代码apt-get install git在创建项目之前,要...
[视频教程] docker端口映射与目录共享运行PHP 当我们在容器中安装完环境以后,需要在宿主机的端口上访问到容器中的端口,这时候就需要做端口映射。在开发代码的时候,需要频繁的修改代码,因此要把宿主机上的代码目录共享到容器中,这样容器里面就能访问的到代码了。之前运行镜像的时候,没有做端口映射,在容器中安装完软件,想再做端口映射,需要把这个运行中的容器提交为一个新的镜像docker commit 容器id 镜像名提交完新镜像后...
[PHP] 安装PHP报错“Primary script unknown”的解决方法 当安装完最新版的nginx和最新版的PHP以后,使用niginx默认配置文件中的PHP配置会有错误访问指定目录下的php文件时,显示File not found.错误。查看nginx的错误日志显示90#90: *1 FastCGI sent in stderr: "Primary script unknown" while reading response header from u...
[视频教程] 配置mysql用户的权限并查询数据 MySQL安装后,需要允许外部IP访问数据库。修改加密配置与增加新用户,配置用户权限修改配置文件,增加默认加密方式的配置项。当连接数据库的时候会报验证方法不存在的错误,这是因为新版本mysql的加密规则有变化,所以连不上数据库,具体可以看官网文档。可以修改mysql的配置文件,修改加密规则为原来那种,然后重新加密下所使用用户的密码。官网文档的地址:https://dev.mysql....
[视频教程] ubuntu系统下安装最新版的MySQL 视频地址:https://www.bilibili.com/video/av69256331/官网文档https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/安装官方的源:wget https://repo.mysql.com//mysql-apt-config_0.8.13-1_all.debdpkg -i my...
[视频教程] ubuntu系统下安装最新版PHP7.3.X环境 视频地址:https://www.bilibili.com/video/av69088870/笔记:先安装一下这个命令 add-apt-repositoryapt-get install software-properties-common添加第三方源:add-apt-repository ppa:ondrej/phpapt-get update安装php:ap...
某业务付费统计脚本问题排查 现象:产品反馈未收到每周五的VIP邮箱付费统计邮件1. 这个统计脚本我从未经手过,因此不知道逻辑是什么,也不知道代码在哪里.通过查看邮件源文件中的来源IP,找到了发出邮件所在的服务器,信头中有类似这样的来源IPX-Originating-IP: [xx.xx.xx.86]2.登陆服务器后,查看crontab的定时规则,找到定时规则是0 0 * * * /bin/sh /xxx/...
[视频教程] 如何在docker环境下的纯净ubuntu系统中安装最新版nginx 视频地址:https://www.bilibili.com/video/av68984490/笔记:1.拉取ubuntu镜像并运行docker pull ubuntudocker run -it ubuntu bash2.先添加阿里云的源,编辑文件/etc/apt/sources.listdeb http://mirrors.aliyun.com/ubuntu/ ...
[PHP] 运维新增服务器导致的附件上传失败问题 现象:客服反馈webmail发信上传附件时,报错提示上传失败,发信时提示发送失败前因:运维同事新增加了三台服务器1.服务器上有一个挂载的公共目录,该目录是存储的上传后的附件文件.该路径是通过一个软链接链接过去的,在新增加的机器上,没有这个软链接,因此就找不到上传目录报权限错误2.增加软链接后,观察应用日志,发现在读取附件文件的代码逻辑中,有一处判断当前服务器IP是否在配置文件中允...
[PHP] 持续交付Jenkins安装 1.下载并运行 Jenkins下载 Jenkins.http://mirrors.jenkins.io/war-stable/latest/jenkins.war打开终端进入到下载目录.运行命令 java -jar jenkins.war --httpPort=8080.打开浏览器进入链接 http://localhost:8080.按照说明完成安装.安装完推荐的插件...
[视频教程] 如何在Linux深度系统deepin下安装docker 笔记:安装docker的命令curl -sSL https://get.docker.com/ | shservice docker start排查错误的命令strace视频地址在此:https://www.bilibili.com/video/av68889436/转载于:https://www.cnblogs.com/taoshihan/p/1158794...
某业务自助开通账户问题排查 现象:销售反馈用户自己开通的账户,只收到了提示邮件,账户没有实际生成前因:1. 用户开通账户调用接口后,在该接口中再次调用销售系统接口实际开通账户2. 有同事开发另一功能时提交过销售系统的代码排查流程:1. webmail.log中记录了调用销售系统的参数和返回内容,用户自助申请中的请求信息正常,返回信息是空的2. 日志服务器会在每天凌晨汇总前一天的所有日志过来,登陆日志服务器,...