【BZOJ1004】[HNOI2008]Cards Burnside引理

【BZOJ1004】[HNOI2008]Cards

题意:把$n$张牌染成$a,b,c$,3种颜色。其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$。并且给出$m$个置换,保证这$m$个置换加上本身的置换能构成一个置换群,两种染色方案被认为是相同的当且仅当一种方案可以通过某个置换变成另一种。求不同的染色方案数。答案对$P$取模。
$sa,sb,sc\le 20,m\le 60$

题解:这里对每种颜色都有一个限制,怎么办呢?
回顾从Burnside引理到Pólya定理的推导过程。
如果一个染色方案是不动点,那么它的每个循环中的所有元素的颜色都相同。
所以对于一个置换$f$,我们找到它的一个循环,大小为$k$,我们可以将其看成一个大小为$k$的物品,然后跑多维背包求出方案数,即为不动点的数目。
最后套用Burnside引理即可。

#include <cstdio>
#include <cstring>
#include <iostream>
int n,m,sa,sb,sc,P;
int ans,f[21][21];
int vis[61],to[61];
inline int solve()
{
    memset(f,0,sizeof(f)),memset(vis,0,sizeof(vis));
    int i,j,a,b,t;
    f[0][0]=1;
    for(i=1;i<=n;i++)   if(!vis[i])
    {
        for(t=0,j=i;!vis[j];vis[j]=1,j=to[j],t++);
        for(a=sa;a>=0;a--)  for(b=sb;b>=0;b--)
        {
            if(a>=t)    f[a][b]+=f[a-t][b];
            if(b>=t)    f[a][b]+=f[a][b-t];
            f[a][b]%=P;
        }
    }
    return f[sa][sb];
}
inline int pw(int x,int y)
{
    int z=1;
    while(y)
    {
        if(y&1) z=z*x%P;
        x=x*x%P,y>>=1;
    }
    return z;
}
int main()
{
    scanf("%d%d%d%d%d",&sa,&sb,&sc,&m,&P),n=sa+sb+sc;
    int i,j;
    for(j=1;j<=m;j++)
    {
        for(i=1;i<=n;i++)   scanf("%d",&to[i]);
        ans+=solve();
    }
    for(i=1;i<=n;i++)   to[i]=i;
    ans+=solve();
    printf("%d",ans*pw(m+1,P-2)%P);
    return 0;
}

转载于:https://www.cnblogs.com/CQzhangyu/p/8227356.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值