BZOJ 1004 [HNOI2008]Cards Burnside引理

题目大意:给出n张牌,分别染a张红色,b张蓝色,c张绿色(n=a+b+c),给出m个置换,问不同的染色方案。

置换群中的染色方案问题可用Burnside引理解决。

Burnside引理可以借助百度百科 中应用的例1理解,或者参考白书理解。

现在要求出不动点的个数。每个置换中都有若干个循环,不动点在一个循环中的颜色必须相同。可以转化成背包问题,将每个循环看作是一个物品,物品的重量为循环元素个数。
最后做除法在模意义下需要逆元,题目中保证模数为质数所以费马小定理一下就好…

#include <cstdio>
#include <cstring>
#define N 105
using namespace std;
typedef long long LL;
int a,b,c,n,m,MOD,p[N];
LL f_pow(LL x,LL y) {
    LL tmp=1;
    while(y) {
        if(y&1) (tmp*=x)%=MOD;
        (x*=x)%=MOD;
        y>>=1;
    }
    return tmp;
}
int calc() {
    static bool k[N];
    static int s[N],top,f[N][N][N];
    memset(k,false,sizeof k);
    top=0;
    for(int i=1;i<=n;i++) {
        if(k[i]) continue;
        int cnt=0,tmp=i;
        while(!k[tmp]) k[tmp]=true, cnt++, tmp=p[tmp];
        s[top++]=cnt;
    }
    memset(f,0,sizeof f);
    f[0][0][0]=1;
    while(top--)
        for(int i=a;~i;i--)
            for(int j=b;~j;j--)
                for(int t=c;~t;t--) {
                    if(i>=s[top]) (f[i][j][t]+=f[i-s[top]][j][t])%=MOD;
                    if(j>=s[top]) (f[i][j][t]+=f[i][j-s[top]][t])%=MOD;
                    if(t>=s[top]) (f[i][j][t]+=f[i][j][t-s[top]])%=MOD;
                }
    return f[a][b][c];
}
int main() {
    scanf("%d%d%d%d%d",&a,&b,&c,&m,&MOD);
    n=a+b+c;
    LL ans=0;
    for(int i=1;i<=m;i++) {
        for(int j=1;j<=n;j++) scanf("%d",p+j);
        ans+=calc();
    }
    for(int j=1;j<=n;j++) p[j]=j;
    ans+=calc();
    printf("%lld\n",ans*f_pow((LL)m+1,(LL)MOD-2)%MOD);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值