【BZOJ4403】序列统计
Description
给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对10^6+3取模的结果。
Input
输入第一行包含一个整数T,表示数据组数。第2到第T+1行每行包含三个整数N、L和R,N、L和R的意义如题所述。
Output
输出包含T行,每行有一个数字,表示你所求出的答案对106+3取模的结果。
Sample Input
2
1 4 5
2 4 5
Sample Output
25
HINT
提示
【样例说明】满足条件的2个序列为[4]和[5]。
【数据规模和约定】对于100%的数据,1≤N,L,R≤10^9,1≤T≤100,输入数据保证L≤R。
题解:区间[l,r]等价于区间[1,r-l+1]。
设f[i][j]表示i个数,最大的那个数是j的方案数,有
这不就是斜过来的杨辉三角吗?然后我们要求的就是这个东西
感觉从1开始不太好看,但是反正f[1][...]等于1,于是我们加上一项
因为这是一个斜过来的杨辉三角,所以f[n+1][r-l+2]对应的就是C[n][n+r-l+1]
然后上lucas定理就行了
注意不能先把1-1000003的逆元都求出来,会TLE!
#include <cstdio>
#include <cstring>
#include <iostream>
#define mod 1000003ll
typedef long long ll;
ll n,m;
ll jc[mod+10],jcc[mod+10];
ll pm(ll x,ll y)
{
if(jcc[x]) return jcc[x];
ll z=1;
while(y)
{
if(y&1) z=z*x%mod;
x=x*x%mod,y>>=1;
}
return jcc[x]=z;
}
ll dfs(ll a,ll b)
{
if(!b) return 1;
if(a<b) return 0;
if(a<mod&&b<mod) return jc[a]*pm(jc[b],mod-2)%mod*pm(jc[a-b],mod-2)%mod;
return dfs(a%mod,b%mod)*dfs(a/mod,b/mod)%mod;
}
int main()
{
int T,i;
ll a,b;
scanf("%d",&T);
for(jc[0]=jcc[0]=1,i=1;i<mod;i++) jc[i]=jc[i-1]*i%mod;
while(T--)
{
scanf("%lld%lld%lld",&n,&a,&b);
printf("%lld\n",(dfs(n+b-a+1,n)+mod-1)%mod);
}
return 0;
}