组合数学 - 序列统计 - AcWing 1312

组合数学 - 序列统计 - AcWing 1312

给定三个正整数 N,L,R,统计长度在 1 到 N 之间,元素大小都在 L 到 R 之间的单调不降序列的数量。

输出答案对 106+3 取模的结果。

输入格式

输入第一行包含一个整数 T,表示数据组数。

第二到第 T+1 行每行包含三个整数 N,L,R。

输出格式

输出包含 T 行,每行有一个数字,表示你所求出的答案对 106+3 取模的结果。

数据范围

1 ≤ N , L , R ≤ 1 0 9 , 1 ≤ T ≤ 100 , 输 入 数 据 保 证 L ≤ R 。 1≤N,L,R≤10^9, 1≤T≤100,\\ 输入数据保证 L≤R。 1N,L,R109,1T100LR

输入样例:

2
1 4 5
2 4 5

输出样例:

2
5

样例解释

对于第一组输入,满足条件的两个序列为 {4},{5}。


分析:

本 题 目 标 : 求 满 足 本题目标:求满足

L ≤ a 1 ≤ a 2 ≤ . . . ≤ a k ≤ R , k ∈ [ 1 , N ] ① L≤a_1≤a_2≤...≤a_k≤R,k∈[1,N]\qquad① La1a2...akRk[1,N]

的 序 列 ( a 1 , a 2 , . . . , a k ) 的 数 量 。 的序列(a_1,a_2,...,a_k)的数量。 (a1,a2,...,ak)

等 价 于 : 等价于:

0 ≤ a 1 ≤ a 2 ≤ . . . ≤ a k ≤ R − L , k ∈ [ 1 , N ] ② 0≤a_1≤a_2≤...≤a_k≤R-L,k∈[1,N]\qquad② 0a1a2...akRLk[1,N]

转化方法一(隔板法):

参考:组合数学(隔板法) + 高精度 - 方程的解 - AcWing 1308

在 《 方 程 的 解 》 这 道 题 中 , 我 们 利 用 隔 板 法 解 决 了 : 在《方程的解》这道题中,我们利用隔板法解决了:

x 1 + x 2 + . . . + x k = C , C 是 常 数 且 x i > 0 , x_1+x_2+...+x_k=C,C是常数且x_i>0, x1+x2+...+xk=CCxi>0

形 如 这 样 的 问 题 可 以 用 隔 板 法 解 决 , 计 算 出 不 同 的 形如这样的问题可以用隔板法解决,计算出不同的 正整数解 的 方 案 总 数 。 的方案总数。

本 题 , 我 们 记 : x 1 = a 1 , x 2 = a 2 − a 1 , . . . , x k = a k − a k − 1 本题,我们记:x_1=a_1,x_2=a_2-a_1,...,x_k=a_k-a_{k-1} x1=a1,x2=a2a1,...,xk=akak1

问 题 转 化 为 : 问题转化为:

x 1 + x 2 + . . . + x k ≤ C = R − L , x i ≥ 0 , x_1+x_2+...+x_k≤C=R-L,x_i≥0, x1+x2+...+xkC=RLxi0

求 不 同 的 求不同的 非负正整数解 的 方 案 总 数 。 的方案总数。

我 们 先 映 射 y i = x i + 1 , 将 非 负 正 整 数 解 转 化 为 正 整 数 解 , 我们先映射y_i=x_i+1,将非负正整数解转化为正整数解, yi=xi+1

不 等 式 转 化 为 : 不等式转化为:

y 1 + y 2 + . . . + y k ≤ C = R − L + k , y i > 0 , y_1+y_2+...+y_k≤C=R-L+k,y_i>0, y1+y2+...+ykC=RL+kyi>0

求 不 同 的 正 整 数 解 的 方 案 总 数 。 求不同的正整数解的方案总数。

到 这 里 , 我 们 又 能 够 参 照 《 方 程 的 解 》 , 用 隔 板 法 解 决 这 个 问 题 。 到这里,我们又能够参照《方程的解》,用隔板法解决这个问题。

需要注意的是:

因 为 这 里 是 小 于 等 于 号 , 故 我 们 不 一 定 要 把 C = R − L + k 个 小 球 全 部 划 分 完 , 因为这里是小于等于号,故我们不一定要把C=R-L+k个小球全部划分完, C=RL+k

这 里 我 们 用 k 个 隔 板 ( 而 非 k − 1 个 隔 板 ) 来 解 决 这 个 问 题 。 这里我们用k个隔板(而非k-1个隔板)来解决这个问题。 k(k1)

y i 的 大 小 为 第 i 个 隔 板 与 第 i − 1 个 隔 板 之 间 的 小 球 数 量 。 y_i的大小为第i个隔板与第i-1个隔板之间的小球数量。 yiii1
在这里插入图片描述
如 上 图 , y 1 + y 2 + y 3 = 4 ≤ C = 5 , 为 一 组 可 行 解 。 如上图,y_1+y_2+y_3=4≤C=5,为一组可行解。 y1+y2+y3=4C=5

总 结 : 对 于 每 一 个 序 列 长 度 k , 方 案 总 数 为 在 R − L + k 个 空 位 中 选 择 k 个 放 隔 板 , 即 C R − L + k k 总结:对于每一个序列长度k,方案总数为在R-L+k个空位中选择k个放隔板,即C_{R-L+k}^k kRL+kkCRL+kk

最 终 答 案 : \qquad\quad最终答案:

∑ k = 1 N C R − L + k k \sum_{k=1}^NC_{R-L+k}^k k=1NCRL+kk


转化方法二:

先 考 虑 如 下 不 等 式 : 先考虑如下不等式:

L ≤ b 1 < b 2 < . . . < b k ≤ R , k ∈ [ 1 , N ] L≤b_1<b_2<...<b_k≤R,k∈[1,N] Lb1<b2<...<bkRk[1,N]

上 述 不 等 式 的 解 的 方 案 总 数 , 相 当 于 在 区 间 [ L , R ] 之 间 选 择 k 个 不 同 的 数 即 C R − L + 1 k 。 上述不等式的解的方案总数,相当于在区间[L,R]之间选择k个不同的数即C_{R-L+1}^k。 [L,R]kCRL+1k

将 ① 式 映 射 : 将①式映射: :

令 b 1 = a 1 , b 2 = a 2 + 1 , b 3 = a 3 + 2 , . . . , b k = a k + k − 1 令b_1=a_1,b_2=a_2+1,b_3=a_3+2,...,b_k=a_k+k-1 b1=a1,b2=a2+1,b3=a3+2,...,bk=ak+k1

得 到 新 的 不 等 式 得到新的不等式

L ≤ b 1 < b 2 < . . . < b k ≤ R + k − 1 , k ∈ [ 1 , N ] ③ L≤b_1<b_2<...<b_k≤R+k-1,k∈[1,N]\qquad③ Lb1<b2<...<bkR+k1k[1,N]

这 相 当 于 我 们 将 数 列 a 的 相 邻 两 项 之 间 的 差 增 加 的 1 , 因 为 原 来 数 列 a 相 邻 两 项 的 差 大 于 等 于 0 。 这相当于我们将数列a的相邻两项之间的差增加的1,因为原来数列a相邻两项的差大于等于0。 a1a0

根 据 方 程 ③ , 即 在 区 间 [ L , R + k − 1 ] 之 间 选 择 k 个 数 , 方 案 总 数 为 : C R − L + k k , 与 方 法 一 得 到 的 结 论 相 同 。 根据方程③,即在区间[L,R+k-1]之间选择k个数,方案总数为:C_{R-L+k}^k,与方法一得到的结论相同。 [L,R+k1]kCRL+kk


最后一步转化:

因 为 N ≤ 1 0 9 , 若 直 接 枚 举 k 会 T L E 。 因为N≤10^9,若直接枚举k会TLE。 N109kTLE

故 我 们 对 ∑ k = 1 N C R − L + k k 进 行 转 化 , 记 M = R − L 故我们对\sum_{k=1}^NC_{R-L+k}^k进行转化,记M=R-L k=1NCRL+kkM=RL

∑ k = 1 N C M + k k = C M + 1 1 + C M + 2 2 + C M + 3 3 + . . . + C M + N N \sum_{k=1}^NC_{M+k}^k=C_{M+1}^1+C_{M+2}^2+C_{M+3}^3+...+C_{M+N}^N k=1NCM+kk=CM+11+CM+22+CM+33+...+CM+NN

   = C M + 1 M + 1 − 1 + C M + 2 M + 2 − 2 + C M + 3 M + 3 − 3 + . . . + C M + N M + N − N \qquad\qquad\quad\ \ =C_{M+1}^{M+1-1}+C_{M+2}^{M+2-2}+C_{M+3}^{M+3-3}+...+C_{M+N}^{M+N-N}   =CM+1M+11+CM+2M+22+CM+3M+33+...+CM+NM+NN

   = C M + 1 M + C M + 2 M + C M + 3 M + . . . + C M + N M \qquad\qquad\quad\ \ =C_{M+1}^{M}+C_{M+2}^M+C_{M+3}^{M}+...+C_{M+N}^{M}   =CM+1M+CM+2M+CM+3M+...+CM+NM

根 据 C n m = C n − 1 m − 1 + C n − 1 m 根据C_n^m=C_{n-1}^{m-1}+C_{n-1}^m Cnm=Cn1m1+Cn1m

原 式 = C M + 1 M + 1 + C M + 1 M + C M + 2 M + C M + 3 M + . . . + C M + N M − C M + 1 M + 1 \qquad\quad 原式=C_{M+1}^{M+1}+C_{M+1}^{M}+C_{M+2}^M+C_{M+3}^{M}+...+C_{M+N}^{M}-C_{M+1}^{M+1} =CM+1M+1+CM+1M+CM+2M+CM+3M+...+CM+NMCM+1M+1

   = C M + 2 M + 1 + C M + 2 M + C M + 3 M + . . . + C M + N M − C M + 1 M + 1 \qquad\qquad\quad\ \ =C_{M+2}^{M+1}+C_{M+2}^M+C_{M+3}^{M}+...+C_{M+N}^{M}-C_{M+1}^{M+1}   =CM+2M+1+CM+2M+CM+3M+...+CM+NMCM+1M+1

   = . . . . \qquad\qquad\quad\ \ =....   =....

   = C M + N + 1 M + 1 − C M + 1 M + 1 = C M + N + 1 M + 1 − 1 \qquad\qquad\quad\ \ =C_{M+N+1}^{M+1}-C_{M+1}^{M+1}=C_{M+N+1}^{M+1}-1   =CM+N+1M+1CM+1M+1=CM+N+1M+11

故最终答案为:

C R − L + N + 1 R − L + 1 − 1 C_{R-L+N+1}^{R-L+1}-1 CRL+N+1RL+11

模 数 1 0 6 + 3 是 质 数 , 用 L u c a s 定 理 求 组 合 数 。 模数10^6+3是质数,用Lucas定理求组合数。 106+3Lucas


总结: 线 性 方 程 / 不 定 方 程 求 解 的 方 案 总 数 , 都 可 以 通 过 一 系 列 映 射 , 再 用 隔 板 法 解 决 。 线性方程/不定方程求解的方案总数,都可以通过一系列映射,再用隔板法解决。 线/


代码:

#include<iostream>

#define ll long long

using namespace std;

const int mod=1e6+3;

int T,n,l,r;

int quick_pow(int a,int b,int mod)
{
    int res=1;
    while(b)
    {
        if(b&1) res=(ll)res*a%mod;
        a=(ll)a*a%mod;
        b>>=1;
    }
    return res;
}

int C(int a,int b,int mod)
{
    if(a<b) return 0;
    
    int up=1, down=1;
    for(int i=a,j=1;j<=b;i--,j++)
    {
        up=(ll)up*i%mod;
        down=(ll)down*j%mod;
    }
    return (ll)up*quick_pow(down,mod-2,mod)%mod;
}

int Lucas(int a,int b,int p)
{
    if(a<p&&b<p) return C(a,b,p);
    return (ll)C(a%p,b%p,p)*Lucas(a/p,b/p,p)%p;
}

int main()
{
    cin>>T;
    while(T--)
    {
        cin>>n>>l>>r;
        cout<<(Lucas(r-l+n+1,r-l+1,mod)-1+mod)%mod<<endl;
    }
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值