组合数学 - 序列统计 - AcWing 1312
给定三个正整数 N,L,R,统计长度在 1 到 N 之间,元素大小都在 L 到 R 之间的单调不降序列的数量。
输出答案对 106+3 取模的结果。
输入格式
输入第一行包含一个整数 T,表示数据组数。
第二到第 T+1 行每行包含三个整数 N,L,R。
输出格式
输出包含 T 行,每行有一个数字,表示你所求出的答案对 106+3 取模的结果。
数据范围
1 ≤ N , L , R ≤ 1 0 9 , 1 ≤ T ≤ 100 , 输 入 数 据 保 证 L ≤ R 。 1≤N,L,R≤10^9, 1≤T≤100,\\ 输入数据保证 L≤R。 1≤N,L,R≤109,1≤T≤100,输入数据保证L≤R。
输入样例:
2
1 4 5
2 4 5
输出样例:
2
5
样例解释
对于第一组输入,满足条件的两个序列为 {4},{5}。
分析:
本 题 目 标 : 求 满 足 本题目标:求满足 本题目标:求满足
L ≤ a 1 ≤ a 2 ≤ . . . ≤ a k ≤ R , k ∈ [ 1 , N ] ① L≤a_1≤a_2≤...≤a_k≤R,k∈[1,N]\qquad① L≤a1≤a2≤...≤ak≤R,k∈[1,N]①
的 序 列 ( a 1 , a 2 , . . . , a k ) 的 数 量 。 的序列(a_1,a_2,...,a_k)的数量。 的序列(a1,a2,...,ak)的数量。
等 价 于 : 等价于: 等价于:
0 ≤ a 1 ≤ a 2 ≤ . . . ≤ a k ≤ R − L , k ∈ [ 1 , N ] ② 0≤a_1≤a_2≤...≤a_k≤R-L,k∈[1,N]\qquad② 0≤a1≤a2≤...≤ak≤R−L,k∈[1,N]②
转化方法一(隔板法):
参考:组合数学(隔板法) + 高精度 - 方程的解 - AcWing 1308
在 《 方 程 的 解 》 这 道 题 中 , 我 们 利 用 隔 板 法 解 决 了 : 在《方程的解》这道题中,我们利用隔板法解决了: 在《方程的解》这道题中,我们利用隔板法解决了:
x 1 + x 2 + . . . + x k = C , C 是 常 数 且 x i > 0 , x_1+x_2+...+x_k=C,C是常数且x_i>0, x1+x2+...+xk=C,C是常数且xi>0,
形 如 这 样 的 问 题 可 以 用 隔 板 法 解 决 , 计 算 出 不 同 的 形如这样的问题可以用隔板法解决,计算出不同的 形如这样的问题可以用隔板法解决,计算出不同的正整数解 的 方 案 总 数 。 的方案总数。 的方案总数。
本 题 , 我 们 记 : x 1 = a 1 , x 2 = a 2 − a 1 , . . . , x k = a k − a k − 1 本题,我们记:x_1=a_1,x_2=a_2-a_1,...,x_k=a_k-a_{k-1} 本题,我们记:x1=a1,x2=a2−a1,...,xk=ak−ak−1
问 题 转 化 为 : 问题转化为: 问题转化为:
x 1 + x 2 + . . . + x k ≤ C = R − L , x i ≥ 0 , x_1+x_2+...+x_k≤C=R-L,x_i≥0, x1+x2+...+xk≤C=R−L,xi≥0,
求 不 同 的 求不同的 求不同的非负正整数解 的 方 案 总 数 。 的方案总数。 的方案总数。
我 们 先 映 射 y i = x i + 1 , 将 非 负 正 整 数 解 转 化 为 正 整 数 解 , 我们先映射y_i=x_i+1,将非负正整数解转化为正整数解, 我们先映射yi=xi+1,将非负正整数解转化为正整数解,
不 等 式 转 化 为 : 不等式转化为: 不等式转化为:
y 1 + y 2 + . . . + y k ≤ C = R − L + k , y i > 0 , y_1+y_2+...+y_k≤C=R-L+k,y_i>0, y1+y2+...+yk≤C=R−L+k,yi>0,
求 不 同 的 正 整 数 解 的 方 案 总 数 。 求不同的正整数解的方案总数。 求不同的正整数解的方案总数。
到 这 里 , 我 们 又 能 够 参 照 《 方 程 的 解 》 , 用 隔 板 法 解 决 这 个 问 题 。 到这里,我们又能够参照《方程的解》,用隔板法解决这个问题。 到这里,我们又能够参照《方程的解》,用隔板法解决这个问题。
需要注意的是:
因 为 这 里 是 小 于 等 于 号 , 故 我 们 不 一 定 要 把 C = R − L + k 个 小 球 全 部 划 分 完 , 因为这里是小于等于号,故我们不一定要把C=R-L+k个小球全部划分完, 因为这里是小于等于号,故我们不一定要把C=R−L+k个小球全部划分完,
这 里 我 们 用 k 个 隔 板 ( 而 非 k − 1 个 隔 板 ) 来 解 决 这 个 问 题 。 这里我们用k个隔板(而非k-1个隔板)来解决这个问题。 这里我们用k个隔板(而非k−1个隔板)来解决这个问题。
y
i
的
大
小
为
第
i
个
隔
板
与
第
i
−
1
个
隔
板
之
间
的
小
球
数
量
。
y_i的大小为第i个隔板与第i-1个隔板之间的小球数量。
yi的大小为第i个隔板与第i−1个隔板之间的小球数量。
如
上
图
,
y
1
+
y
2
+
y
3
=
4
≤
C
=
5
,
为
一
组
可
行
解
。
如上图,y_1+y_2+y_3=4≤C=5,为一组可行解。
如上图,y1+y2+y3=4≤C=5,为一组可行解。
总 结 : 对 于 每 一 个 序 列 长 度 k , 方 案 总 数 为 在 R − L + k 个 空 位 中 选 择 k 个 放 隔 板 , 即 C R − L + k k 总结:对于每一个序列长度k,方案总数为在R-L+k个空位中选择k个放隔板,即C_{R-L+k}^k 总结:对于每一个序列长度k,方案总数为在R−L+k个空位中选择k个放隔板,即CR−L+kk
最 终 答 案 : \qquad\quad最终答案: 最终答案:
∑ k = 1 N C R − L + k k \sum_{k=1}^NC_{R-L+k}^k k=1∑NCR−L+kk
转化方法二:
先 考 虑 如 下 不 等 式 : 先考虑如下不等式: 先考虑如下不等式:
L ≤ b 1 < b 2 < . . . < b k ≤ R , k ∈ [ 1 , N ] L≤b_1<b_2<...<b_k≤R,k∈[1,N] L≤b1<b2<...<bk≤R,k∈[1,N]
上 述 不 等 式 的 解 的 方 案 总 数 , 相 当 于 在 区 间 [ L , R ] 之 间 选 择 k 个 不 同 的 数 即 C R − L + 1 k 。 上述不等式的解的方案总数,相当于在区间[L,R]之间选择k个不同的数即C_{R-L+1}^k。 上述不等式的解的方案总数,相当于在区间[L,R]之间选择k个不同的数即CR−L+1k。
将 ① 式 映 射 : 将①式映射: 将①式映射:
令 b 1 = a 1 , b 2 = a 2 + 1 , b 3 = a 3 + 2 , . . . , b k = a k + k − 1 令b_1=a_1,b_2=a_2+1,b_3=a_3+2,...,b_k=a_k+k-1 令b1=a1,b2=a2+1,b3=a3+2,...,bk=ak+k−1
得 到 新 的 不 等 式 得到新的不等式 得到新的不等式
L ≤ b 1 < b 2 < . . . < b k ≤ R + k − 1 , k ∈ [ 1 , N ] ③ L≤b_1<b_2<...<b_k≤R+k-1,k∈[1,N]\qquad③ L≤b1<b2<...<bk≤R+k−1,k∈[1,N]③
这 相 当 于 我 们 将 数 列 a 的 相 邻 两 项 之 间 的 差 增 加 的 1 , 因 为 原 来 数 列 a 相 邻 两 项 的 差 大 于 等 于 0 。 这相当于我们将数列a的相邻两项之间的差增加的1,因为原来数列a相邻两项的差大于等于0。 这相当于我们将数列a的相邻两项之间的差增加的1,因为原来数列a相邻两项的差大于等于0。
根 据 方 程 ③ , 即 在 区 间 [ L , R + k − 1 ] 之 间 选 择 k 个 数 , 方 案 总 数 为 : C R − L + k k , 与 方 法 一 得 到 的 结 论 相 同 。 根据方程③,即在区间[L,R+k-1]之间选择k个数,方案总数为:C_{R-L+k}^k,与方法一得到的结论相同。 根据方程③,即在区间[L,R+k−1]之间选择k个数,方案总数为:CR−L+kk,与方法一得到的结论相同。
最后一步转化:
因 为 N ≤ 1 0 9 , 若 直 接 枚 举 k 会 T L E 。 因为N≤10^9,若直接枚举k会TLE。 因为N≤109,若直接枚举k会TLE。
故 我 们 对 ∑ k = 1 N C R − L + k k 进 行 转 化 , 记 M = R − L 故我们对\sum_{k=1}^NC_{R-L+k}^k进行转化,记M=R-L 故我们对∑k=1NCR−L+kk进行转化,记M=R−L
∑ k = 1 N C M + k k = C M + 1 1 + C M + 2 2 + C M + 3 3 + . . . + C M + N N \sum_{k=1}^NC_{M+k}^k=C_{M+1}^1+C_{M+2}^2+C_{M+3}^3+...+C_{M+N}^N ∑k=1NCM+kk=CM+11+CM+22+CM+33+...+CM+NN
= C M + 1 M + 1 − 1 + C M + 2 M + 2 − 2 + C M + 3 M + 3 − 3 + . . . + C M + N M + N − N \qquad\qquad\quad\ \ =C_{M+1}^{M+1-1}+C_{M+2}^{M+2-2}+C_{M+3}^{M+3-3}+...+C_{M+N}^{M+N-N} =CM+1M+1−1+CM+2M+2−2+CM+3M+3−3+...+CM+NM+N−N
= C M + 1 M + C M + 2 M + C M + 3 M + . . . + C M + N M \qquad\qquad\quad\ \ =C_{M+1}^{M}+C_{M+2}^M+C_{M+3}^{M}+...+C_{M+N}^{M} =CM+1M+CM+2M+CM+3M+...+CM+NM
根 据 C n m = C n − 1 m − 1 + C n − 1 m 根据C_n^m=C_{n-1}^{m-1}+C_{n-1}^m 根据Cnm=Cn−1m−1+Cn−1m
原 式 = C M + 1 M + 1 + C M + 1 M + C M + 2 M + C M + 3 M + . . . + C M + N M − C M + 1 M + 1 \qquad\quad 原式=C_{M+1}^{M+1}+C_{M+1}^{M}+C_{M+2}^M+C_{M+3}^{M}+...+C_{M+N}^{M}-C_{M+1}^{M+1} 原式=CM+1M+1+CM+1M+CM+2M+CM+3M+...+CM+NM−CM+1M+1
= C M + 2 M + 1 + C M + 2 M + C M + 3 M + . . . + C M + N M − C M + 1 M + 1 \qquad\qquad\quad\ \ =C_{M+2}^{M+1}+C_{M+2}^M+C_{M+3}^{M}+...+C_{M+N}^{M}-C_{M+1}^{M+1} =CM+2M+1+CM+2M+CM+3M+...+CM+NM−CM+1M+1
= . . . . \qquad\qquad\quad\ \ =.... =....
= C M + N + 1 M + 1 − C M + 1 M + 1 = C M + N + 1 M + 1 − 1 \qquad\qquad\quad\ \ =C_{M+N+1}^{M+1}-C_{M+1}^{M+1}=C_{M+N+1}^{M+1}-1 =CM+N+1M+1−CM+1M+1=CM+N+1M+1−1
故最终答案为:
C R − L + N + 1 R − L + 1 − 1 C_{R-L+N+1}^{R-L+1}-1 CR−L+N+1R−L+1−1
模 数 1 0 6 + 3 是 质 数 , 用 L u c a s 定 理 求 组 合 数 。 模数10^6+3是质数,用Lucas定理求组合数。 模数106+3是质数,用Lucas定理求组合数。
总结: 线 性 方 程 / 不 定 方 程 求 解 的 方 案 总 数 , 都 可 以 通 过 一 系 列 映 射 , 再 用 隔 板 法 解 决 。 线性方程/不定方程求解的方案总数,都可以通过一系列映射,再用隔板法解决。 线性方程/不定方程求解的方案总数,都可以通过一系列映射,再用隔板法解决。
代码:
#include<iostream>
#define ll long long
using namespace std;
const int mod=1e6+3;
int T,n,l,r;
int quick_pow(int a,int b,int mod)
{
int res=1;
while(b)
{
if(b&1) res=(ll)res*a%mod;
a=(ll)a*a%mod;
b>>=1;
}
return res;
}
int C(int a,int b,int mod)
{
if(a<b) return 0;
int up=1, down=1;
for(int i=a,j=1;j<=b;i--,j++)
{
up=(ll)up*i%mod;
down=(ll)down*j%mod;
}
return (ll)up*quick_pow(down,mod-2,mod)%mod;
}
int Lucas(int a,int b,int p)
{
if(a<p&&b<p) return C(a,b,p);
return (ll)C(a%p,b%p,p)*Lucas(a/p,b/p,p)%p;
}
int main()
{
cin>>T;
while(T--)
{
cin>>n>>l>>r;
cout<<(Lucas(r-l+n+1,r-l+1,mod)-1+mod)%mod<<endl;
}
return 0;
}