组合数学 - 序列统计 - AcWing 1312

组合数学 - 序列统计 - AcWing 1312

给定三个正整数 N,L,R,统计长度在 1 到 N 之间,元素大小都在 L 到 R 之间的单调不降序列的数量。

输出答案对 106+3 取模的结果。

输入格式

输入第一行包含一个整数 T,表示数据组数。

第二到第 T+1 行每行包含三个整数 N,L,R。

输出格式

输出包含 T 行,每行有一个数字,表示你所求出的答案对 106+3 取模的结果。

数据范围

1 ≤ N , L , R ≤ 1 0 9 , 1 ≤ T ≤ 100 , 输 入 数 据 保 证 L ≤ R 。 1≤N,L,R≤10^9, 1≤T≤100,\\ 输入数据保证 L≤R。 1N,L,R109,1T100LR

输入样例:

2
1 4 5
2 4 5

输出样例:

2
5

样例解释

对于第一组输入,满足条件的两个序列为 {4},{5}。


分析:

本 题 目 标 : 求 满 足 本题目标:求满足

L ≤ a 1 ≤ a 2 ≤ . . . ≤ a k ≤ R , k ∈ [ 1 , N ] ① L≤a_1≤a_2≤...≤a_k≤R,k∈[1,N]\qquad① La1a2...akRk[1,N]

的 序 列 ( a 1 , a 2 , . . . , a k ) 的 数 量 。 的序列(a_1,a_2,...,a_k)的数量。 (a1,a2,...,ak)

等 价 于 : 等价于:

0 ≤ a 1 ≤ a 2 ≤ . . . ≤ a k ≤ R − L , k ∈ [ 1 , N ] ② 0≤a_1≤a_2≤...≤a_k≤R-L,k∈[1,N]\qquad② 0a1a2...akRLk[1,N]

转化方法一(隔板法):

参考:组合数学(隔板法) + 高精度 - 方程的解 - AcWing 1308

在 《 方 程 的 解 》 这 道 题 中 , 我 们 利 用 隔 板 法 解 决 了 : 在《方程的解》这道题中,我们利用隔板法解决了:

x 1 + x 2 + . . . + x k = C , C 是 常 数 且 x i > 0 , x_1+x_2+...+x_k=C,C是常数且x_i>0, x1+x2+...+xk=CCxi>0

形 如 这 样 的 问 题 可 以 用 隔 板 法 解 决 , 计 算 出 不 同 的 形如这样的问题可以用隔板法解决,计算出不同的 正整数解 的 方 案 总 数 。 的方案总数。

本 题 , 我 们 记 : x 1 = a 1 , x 2 = a 2 − a 1 , . . . , x k = a k − a k − 1 本题,我们记:x_1=a_1,x_2=a_2-a_1,...,x_k=a_k-a_{k-1} x1=a1,x2=a2a1,...,xk=akak1

问 题 转 化 为 : 问题转化为:

x 1 + x 2 + . . . + x k ≤ C = R − L , x i ≥ 0 , x_1+x_2+...+x_k≤C=R-L,x_i≥0, x1+x2+...+xkC=RLxi0

求 不 同 的 求不同的 非负正整数解 的 方 案 总 数 。 的方案总数。

我 们 先 映 射 y i = x i + 1 , 将 非 负 正 整 数 解 转 化 为 正 整 数 解 , 我们先映射y_i=x_i+1,将非负正整数解转化为正整数解, yi=xi+1

不 等 式 转 化 为 : 不等式转化为:

y 1 + y 2 + . . . + y k ≤ C = R − L + k , y i > 0 , y_1+y_2+...+y_k≤C=R-L+k,y_i>0, y1+y2+...+ykC=RL+kyi>0

求 不 同 的 正 整 数 解 的 方 案 总 数 。 求不同的正整数解的方案总数。

到 这 里 , 我 们 又 能 够 参 照 《 方 程 的 解 》 , 用 隔 板 法 解 决 这 个 问 题 。 到这里,我们又能够参照《方程的解》,用隔板法解决这个问题。

需要注意的是:

因 为 这 里 是 小 于 等 于 号 , 故 我 们 不 一 定 要 把 C = R − L + k 个 小 球 全 部 划 分 完 , 因为这里是小于等于号,故我们不一定要把C=R-L+k个小球全部划分完, C=RL+k

这 里 我 们 用 k 个 隔 板 ( 而 非 k − 1 个 隔 板 ) 来 解 决 这 个 问 题 。 这里我们用k个隔板(而非k-1个隔板)来解决这个问题。 k(k1)

y i 的 大 小 为 第 i 个 隔 板 与 第 i − 1 个 隔 板 之 间 的 小 球 数 量 。 y_i的大小为第i个隔板与第i-1个隔板之间的小球数量。 yiii1
在这里插入图片描述
如 上 图 , y 1 + y 2 + y 3 = 4 ≤ C = 5 , 为 一 组 可 行 解 。 如上图,y_1+y_2+y_3=4≤C=5,为一组可行解。 y1+y2+y3=4C=5

总 结 : 对 于 每 一 个 序 列 长 度 k , 方 案 总 数 为 在 R − L + k 个 空 位 中 选 择 k 个 放 隔 板 , 即 C R − L + k k 总结:对于每一个序列长度k,方案总数为在R-L+k个空位中选择k个放隔板,即C_{R-L+k}^k kRL+kkCRL+kk

最 终 答 案 : \qquad\quad最终答案:

∑ k = 1 N C R − L + k k \sum_{k=1}^NC_{R-L+k}^k k=1NCRL+kk


转化方法二:

先 考 虑 如 下 不 等 式 : 先考虑如下不等式:

L ≤ b 1 < b 2 < . . . < b k ≤ R , k ∈ [ 1 , N ] L≤b_1<b_2<...<b_k≤R,k∈[1,N] Lb1<b2<...<bkRk[1,N]

上 述 不 等 式 的 解 的 方 案 总 数 , 相 当 于 在 区 间 [ L , R ] 之 间 选 择 k 个 不 同 的 数 即 C R − L + 1 k 。 上述不等式的解的方案总数,相当于在区间[L,R]之间选择k个不同的数即C_{R-L+1}^k。 [L,R]kCRL+1k

将 ① 式 映 射 : 将①式映射: :

令 b 1 = a 1 , b 2 = a 2 + 1 , b 3 = a 3 + 2 , . . . , b k = a k + k − 1 令b_1=a_1,b_2=a_2+1,b_3=a_3+2,...,b_k=a_k+k-1 b1=a1,b2=a2+1,b3=a3+2,...,bk=ak+k1

得 到 新 的 不 等 式 得到新的不等式

L ≤ b 1 < b 2 < . . . < b k ≤ R + k − 1 , k ∈ [ 1 , N ] ③ L≤b_1<b_2<...<b_k≤R+k-1,k∈[1,N]\qquad③ Lb1<b2<...<bkR+k1k[1,N]

这 相 当 于 我 们 将 数 列 a 的 相 邻 两 项 之 间 的 差 增 加 的 1 , 因 为 原 来 数 列 a 相 邻 两 项 的 差 大 于 等 于 0 。 这相当于我们将数列a的相邻两项之间的差增加的1,因为原来数列a相邻两项的差大于等于0。 a1a0

根 据 方 程 ③ , 即 在 区 间 [ L , R + k − 1 ] 之 间 选 择 k 个 数 , 方 案 总 数 为 : C R − L + k k , 与 方 法 一 得 到 的 结 论 相 同 。 根据方程③,即在区间[L,R+k-1]之间选择k个数,方案总数为:C_{R-L+k}^k,与方法一得到的结论相同。 [L,R+k1]kCRL+kk


最后一步转化:

因 为 N ≤ 1 0 9 , 若 直 接 枚 举 k 会 T L E 。 因为N≤10^9,若直接枚举k会TLE。 N109kTLE

故 我 们 对 ∑ k = 1 N C R − L + k k 进 行 转 化 , 记 M = R − L 故我们对\sum_{k=1}^NC_{R-L+k}^k进行转化,记M=R-L k=1NCRL+kkM=RL

∑ k = 1 N C M + k k = C M + 1 1 + C M + 2 2 + C M + 3 3 + . . . + C M + N N \sum_{k=1}^NC_{M+k}^k=C_{M+1}^1+C_{M+2}^2+C_{M+3}^3+...+C_{M+N}^N k=1NCM+kk=CM+11+CM+22+CM+33+...+CM+NN

   = C M + 1 M + 1 − 1 + C M + 2 M + 2 − 2 + C M + 3 M + 3 − 3 + . . . + C M + N M + N − N \qquad\qquad\quad\ \ =C_{M+1}^{M+1-1}+C_{M+2}^{M+2-2}+C_{M+3}^{M+3-3}+...+C_{M+N}^{M+N-N}   =CM+1M+11+CM+2M+22+CM+3M+33+...+CM+NM+NN

   = C M + 1 M + C M + 2 M + C M + 3 M + . . . + C M + N M \qquad\qquad\quad\ \ =C_{M+1}^{M}+C_{M+2}^M+C_{M+3}^{M}+...+C_{M+N}^{M}   =CM+1M+CM+2M+CM+3M+...+CM+NM

根 据 C n m = C n − 1 m − 1 + C n − 1 m 根据C_n^m=C_{n-1}^{m-1}+C_{n-1}^m Cnm=Cn1m1+Cn1m

原 式 = C M + 1 M + 1 + C M + 1 M + C M + 2 M + C M + 3 M + . . . + C M + N M − C M + 1 M + 1 \qquad\quad 原式=C_{M+1}^{M+1}+C_{M+1}^{M}+C_{M+2}^M+C_{M+3}^{M}+...+C_{M+N}^{M}-C_{M+1}^{M+1} =CM+1M+1+CM+1M+CM+2M+CM+3M+...+CM+NMCM+1M+1

   = C M + 2 M + 1 + C M + 2 M + C M + 3 M + . . . + C M + N M − C M + 1 M + 1 \qquad\qquad\quad\ \ =C_{M+2}^{M+1}+C_{M+2}^M+C_{M+3}^{M}+...+C_{M+N}^{M}-C_{M+1}^{M+1}   =CM+2M+1+CM+2M+CM+3M+...+CM+NMCM+1M+1

   = . . . . \qquad\qquad\quad\ \ =....   =....

   = C M + N + 1 M + 1 − C M + 1 M + 1 = C M + N + 1 M + 1 − 1 \qquad\qquad\quad\ \ =C_{M+N+1}^{M+1}-C_{M+1}^{M+1}=C_{M+N+1}^{M+1}-1   =CM+N+1M+1CM+1M+1=CM+N+1M+11

故最终答案为:

C R − L + N + 1 R − L + 1 − 1 C_{R-L+N+1}^{R-L+1}-1 CRL+N+1RL+11

模 数 1 0 6 + 3 是 质 数 , 用 L u c a s 定 理 求 组 合 数 。 模数10^6+3是质数,用Lucas定理求组合数。 106+3Lucas


总结: 线 性 方 程 / 不 定 方 程 求 解 的 方 案 总 数 , 都 可 以 通 过 一 系 列 映 射 , 再 用 隔 板 法 解 决 。 线性方程/不定方程求解的方案总数,都可以通过一系列映射,再用隔板法解决。 线/


代码:

#include<iostream>

#define ll long long

using namespace std;

const int mod=1e6+3;

int T,n,l,r;

int quick_pow(int a,int b,int mod)
{
    int res=1;
    while(b)
    {
        if(b&1) res=(ll)res*a%mod;
        a=(ll)a*a%mod;
        b>>=1;
    }
    return res;
}

int C(int a,int b,int mod)
{
    if(a<b) return 0;
    
    int up=1, down=1;
    for(int i=a,j=1;j<=b;i--,j++)
    {
        up=(ll)up*i%mod;
        down=(ll)down*j%mod;
    }
    return (ll)up*quick_pow(down,mod-2,mod)%mod;
}

int Lucas(int a,int b,int p)
{
    if(a<p&&b<p) return C(a,b,p);
    return (ll)C(a%p,b%p,p)*Lucas(a/p,b/p,p)%p;
}

int main()
{
    cin>>T;
    while(T--)
    {
        cin>>n>>l>>r;
        cout<<(Lucas(r-l+n+1,r-l+1,mod)-1+mod)%mod<<endl;
    }
    
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Java中的序列化是指将一个对象转换为字节序列的过程,以便于在网络上传输或者将对象保存到磁盘上。在Java中,只有实现了Serializable接口的对象才能被序列化,否则会抛出NotSerializableException异常。序列化可以通过ObjectOutputStream类来实现,反序列化可以通过ObjectInputStream类来实现。序列化在Java中广泛应用于分布式系统、缓存、消息队列等场景。 ### 回答2: Java序列化是指将对象转换为可存储或传输的字节序列的过程,可以使得对象的状态在程序结束后仍能够保存。使用Java的序列化机制能够方便实现Java对象的持久化,并且在数据传输过程中也可以进行对象的存储和传输,从而可以进行跨平台数据交互。 在Java中,如果一个类需要进行序列化,就需要实现Serializable接口。该接口是一个标记接口,不包含任何方法,只是用来表示这个类可以被序列化。当使用ObjectOutputStream来将某个对象转换成字节序列时,如果该对象所属的类实现了Serializable接口,那么该对象就可以被序列化,否则会抛出NotSerializableException异常。 序列化可以实现多种用途,例如: 1. 持久化:将对象序列化后储存在磁盘上,方便下次读取使用。 2. 分布式:在分布式系统中,对象在不同节点间传输时需要进行序列化和反序列化。 3. 缓存:将对象序列化后储存在缓存中,提高读取速度。 在序列化中也需要注意一些问题,例如: 1. 序列化ID:在序列化时,会对原对象进行哈希处理,生成一个序列化ID。反序列化时,会对这个ID进行比对,如果不一致就会抛出InvalidClassException异常。如果需要保持原有的序列化ID,可以通过声明静态变量serialVersionUID进行指定。 2. 敏感信息:在序列化时,需要注意敏感信息的处理,例如密码、证书等信息不应该被序列化。 3. 序列化版本:在序列化时,需要注意版本的处理。如果对象已经发生了变化,例如增删了某些属性或方法,就需要对版本做出相应的改变,否则会出现兼容性问题。 总之,Java的序列化机制为我们提供了一种方便、高效、跨平台的数据交互方式,使用起来相对简单,在实际开发中也非常实用。 ### 回答3: Java的序列化是指将一个对象转换成字节流的过程。当一个对象被序列化之后,它的字节流可以被传输到网络或者存储到本地磁盘上,以便于以后的操作。反序列化则是将字节流转换成对象的过程。 序列化在Java中的实现方式是通过实现Serializable接口来实现的。在Java中,Serializable接口是一个空接口,仅仅是一个标识接口,用来标记对象可以被序列化和反序列化。如果一个类实现了Serializable接口,那么就可以将该类的对象序列化和反序列化。 Java的序列化机制可以使用ObjectOutputStream类和ObjectInputStream类来实现。ObjectOutputStream类用于将对象序列化成字节流,而ObjectInputStream类用于将字节流反序列化成对象。 序列化的主要用途是将对象在网络中传输以及将对象存储到本地磁盘上。在网络中传输对象时,可以将对象序列化成字节流,然后在网络中传输。接收方可以将收到的字节流反序列化成对象,这样就可以在不同的机器上传递对象。在将对象存储到本地磁盘上时,可以将对象序列化成字节流,然后将字节流写入磁盘,以便以后可以读取该对象。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值