POJ 1564 Sum It Up (DFS+剪枝)


                                                                                                               Sum It Up
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 5820 Accepted: 2970

Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25


Source



思路:因为数量少。能够暴力搜索解决。

DFS。值得注意的地方是去重,我用的是和上一递归pre比較。假设同样则减枝。



#include<iostream>
#include<cstdio>

using namespace std;

int num[15],ans[15];
int flag,t,n;

void dfs(int now,int sum,int cur)
{
    if(sum==0)
    {
        flag=1;
        printf("%d",ans[0]);
        for(int i=1;i<cur;i++)
        {
            printf("+%d",ans[i]);
        }
        printf("\n");
        return;
    }
    else
    {
        int pre=-1;
        for(int i=now;i<n;i++)
        {
            if(sum>=num[i]&&num[i]!=pre)
            {
                pre=num[i];                       //此处与上一次递归的num[i],即pre,作比較。
                ans[cur]=num[i];
                dfs(i+1,sum-num[i],cur+1);
            }
        }
    }
}



int main()
{
    while(scanf("%d%d",&t,&n),n&&t)
    {
        flag=0;
        printf("Sums of %d:\n",t);
        for(int i=0;i<n;i++)
            scanf("%d",num+i);
        dfs(0,t,0);

        if(!flag)
            printf("NONE\n");
    }

    return 0;

}

       
不知道。我理解得,对不正确。每条递归路线互不影响。

即一个数组ans[15],并没有什么值得覆盖问题。

转载于:https://www.cnblogs.com/zhchoutai/p/6711066.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值