71. 读懂人性

读懂人性

        除了最小的项目开发以外,人们都要与其他人合作。除了最抽象的领域以外,人们都需要其他人写软件支持其目标。人和人一起编写软件,这是人与人的事。不幸的是,给程序员关于如何与他们为之工作、与之工作的人打交道的教导实在是太少了。幸运的是有一整个领域的研究可以提供帮助。
        例如,Ludwig Wittgenstein在《哲学研究》(Philosophical Investigations)和其它一些地方阐述了:不论我们用什么语言与其他人对话,不会,也不可能将将思想、想法和画面从他人的脑海中以一种序列化的格式移到我们脑海中,虽然我们已经在“收集需求时”主动地防止误解了。Wittgenstein还表示,我们理解他人的能力并不来源来共同定义,而是来自于生活中某种形式的共同经历。这可能是沉浸于他们问题的领域的程序员倾向于比外行的做得更好的原因之一。
        Lakeoff和Johnson给了我们《我们赖以生存的譬喻》(Metaphors We Live By),表明语言很大程序是隐喻,这些隐喻对我们如何理解这个世界提供一种深入见解。即便是具体的短语,比如我们很可能在讨论财经系统时说的“现金流”,也可以看成一种隐喻:“金钱是流动的。”这个隐喻是如何影响我们对金钱处理系统的看法的呢?我们可能讨论不同层的协议,有高层的也有低层的。这也是很强的隐喻:用户在“上”,科技在“下”。这表达了我们构建的系统的架构。它也可以作为我们可能从时不时打破的过程中获得好处的懒惰思维习惯的标志。
        Martin Heidegger仔细研究了人员对工具的体验方法。程序构建、使用工具,我们思考、创造、修改、再创造工具。工具是我们的兴趣所在。但对用户,正如Heidegger在《存在与时间》(Being and Time)中展现的,工具成为一种只有在使用时理解的无形的东西。对于用户来说,只有在它们不管用时,才会对工具产生兴趣。每当讨论可用性时,这种差别是值得扎根于脑海的。
       Eleanor Rosch推翻了我们组织自己对世界的认识的亚里斯士多德式的范畴模式。当程序员向用户询问他们对系统的需求时,我们倾向于想要由谓词构建出来的定义。这么我们很方便。谓词短语可以很容易成为类的属性或者表格的列。这些种类的范畴很干脆、不相交、整洁。不幸的是,正如Rosch在《自然范畴》(Natural Categories)和后续作品中表明的,这不是一般人理解世界的方式。他们基于例子的方式来理解世界。一些他们称为原型的例子比其它的更好,因此导致的种类很混乱、相交并且内部很丰富。因此我们坚持问用户亚里士多德式的答案,我们不能向用户询问有关他们世界的正确问题,得到需要的共同认识是需要努力的。

原文:Read the Humanities by Keith Braithwaite

资源下载链接为: https://pan.quark.cn/s/ddc62c5d4a5d Windows Mobile 是微软在 0200 年代至 2010 年代初推出的移动操作系统,曾广泛应用于智能手机和平板电脑。开发者可以借助各种库和框架为其开发功能丰富的应用,其中 “32feet.NET” 是一个开源的 .NET 库,专为 .NET Framework 和 .NET Compact Framework 提供蓝牙开发支持。它包含多个命名空间,例如 InTheHand.Devices.Bluetooth、InTheHand.Net.Personal 和 InTheHand.Phone.Bluetooth,用于实现蓝牙设备交互功能。 InTheHand.Devices.Bluetooth 命名空间用于执行基础蓝牙操作,比如扫描附近设备、建立连接以及发现蓝牙服务等。InTheHand.Net.Personal 提供了更高级的功能,例如创建个人区域网络(PAN)、文件传输和串行端口模拟,便于开发者开发跨设备的数据共享应用。而 InTheHand.Phone.Bluetooth 主要针对 Windows Phone 平台,支持蓝牙配对、消息收发和蓝牙耳机控制等功能,不过由于 Windows Mobile 已停止更新,该命名空间更多适用于旧设备或项目。 压缩包中的文件列表看似是维基页面的渲染文件,可能是关于 32feet.NET 的使用教程、API 参考或示例代码。文件名如 13632.html、563803.html 等可能是页面 ID,涵盖蓝牙设备搜索、连接和数据传输等不同主题。 使用 32feet.NET 进行蓝牙开发时,开发者需要注意以下几点:首先,确保开发环境已安装 .NET Framework 或 .NET Compact Framework,以及 32feet.NET
资源下载链接为: https://pan.quark.cn/s/d8a2bf0af1ac Mask R-CNN 是一种在实例分割任务中表现优异的深度学习模型,它融合了 Faster R-CNN 的目标检测功能和 CNN 的像素级分类能力,能够实现图像中每个目标的定位、识别与分割。本指南将指导你如何使用 Mask R-CNN 训练自定义数据集。 你需要准备包含图像(JPEG 或 PNG 格式)和标注文件(XML 或 JSON 格式)的数据集,标注文件需包含物体类别、坐标和掩模信息。数据集应按照 COCO 标准组织,分为训练集、验证集和可选的测试集。可以使用工具如 COCO API 或 labelme 将原始数据转换为 COCO 格式,并确保图像文件名与标注文件名一致且在同一目录下。通常按 8:2 或 9:1 的比例划分训练集和验证集。 从提供的压缩包中安装所需库。运行 pip install -r requirements.txt 安装依赖,包括 TensorFlow、Keras、Cython、COCO API 等。 修改 train_test.py 和 test_model.py 中的路径,使其指向你的数据集目录,确保 ROOT_DIR 指向数据集根目录,ANNOTATION_DIR 指向标注文件所在目录。在 config.py 中根据硬件资源和训练目标调整学习率、批大小、迭代次数等参数。 运行 train_test.py 开始训练。训练时会加载预训练权重并进行微调,期间会定期保存模型,便于评估和恢复。 使用 test_model.py 或 test.py 对模型进行验证和测试。这些脚本会加载保存的模型权重,将其应用于新图像并生成预测结果。 预测结果为二进制掩模,需进一步处理为可读图像。可借助 COCO API 或自定义脚本将掩模合并到原始图像上,生成可视化结果。 若模型性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值