首先。我们看到这篇文章的题目,我们就会想到之前的那个题目 -- 连续子数组最大和问题。
这个问题无疑就是把原问题扩展到二维的情况。
想起来这个问题也不是非常难,我们能够求解一维矩阵的思想。即我们能够固定住行(或列),之后。我们去求解列(或行)所构成的最大和就能够了。
这里的解法利用的是固定住行,然后求解须要寻找的列之和。利用书中提到的一个公式:
以左上角的元素(1,1)和当前元素(i,j)为顶点对的子矩阵的部分和,部分和的计算例如以下
PS[i][j] = A[i][j]+PS[i-1][j]+PS[i][j-1]-PS[i-1][j-1]
由此,我们非常easy能够得到以下的解答:
函数声明:
/*2.15 二维数组最大子数组的和(数组下标从(1,1)開始)*/
int DutPartialSum(int**, int, int, int);
int DutMaxSubMatrixInTwoDimensionArray(int**, int, int);
源码:
bool _DutPartialSum = false;
int DutPartialSum(int** p, int i, int j, int k)
{
if (!p || i <= 0 || j <= 0 || k <= 0)
{
_DutPartialSum = true;
return -1;
}
return p[j][k] - p[j][k - 1] - p[i - 1][k] + p[i - 1][k - 1];
}
bool _DutMaxSubMatrixInTwoDimensionArray = false;
int DutMaxSubMatrixInTwoDimensionArray(int** A, int n, int m)
{
if (!A || n <= 0 || m <= 0)
{
_DutMaxSubMatrixInTwoDimensionArray = true;
return -1;
}
int **p = new int* [n + 1];
for (int i = 0; i <= n; ++i)
p[i] = new int[m];
for (int i = 0; i <= n; ++i)
p[i][0] = 0;
for (int i = 0; i <= m; ++i)
p[0][i] = 0;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
p[i][j] = p[i - 1][j] + p[i][j - 1] - p[i - 1][j - 1] + A[i][j];
int maxSum = 1 << 31;
for (int i = 1; i <= n; ++i)
{
for (int j = i; j <= n; ++j)
{
int start = DutPartialSum(p, i, j, m);
int all = DutPartialSum(p, i, j, m);
for (int k = m - 1; k >= 1; --k)
{
if (start <= 0)
start = DutPartialSum(p, i, j, k);
else
start += DutPartialSum(p, i, j, k);
if (start > all)
all = start;
}
if (all > maxSum)
maxSum = all;
}
}
return maxSum;
}