- 博客(5)
- 收藏
- 关注
转载 【usaco】Bessie's Secret Pasture 贝茜的秘密草坪
Bessie's Secret Pasture 贝茜的秘密草坪这道题dp的转移的方式很妙,值得一记。说实话,拿到这道题,我先想到的是一个5维的转移方程,不详细说,大概可以理解为我记录了各个重复物品的情况吧,毕竟最终方案是要考虑顺序的;我的目的是先跑多重背包,然后在答案处最后求组合数,然而实现太麻烦。看了题解,我才感慨。让我们直接看看状态枚举吧:这...
2017-10-20 20:26:00 1419
转载 【Good Blog】
Good Blog 此处专门记录那些值得一看的 好博客 和 好博文好博客: 1.MashiroSky :http://www.cnblogs.com/MashiroSky/ :3 文章写得很详细,很好懂。好博文: 1.MashiroSky的中国剩余定理讲解 :http://www.cnblogs.com/Mashiro...
2017-10-17 16:26:00 110
转载 【积性函数基础学习】
积性函数基础学习1. 什么是积性函数?积性函数的两个定义: (1) 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数 (2)完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数。观察以上对积性函数的定义,我们可以找出关于此类函数的特点: (1) 在积性函数的定义f(ab)=f...
2017-10-12 20:16:00 500
转载 【Note】
Note 经常记录小笔记的地方。 1.C(1,n)+C(2,n)+...+C(n,n)=2^n (由二项式定理(1+1)^2特殊情况展开得到)。 2.| (二进制或) 仅在 数为偶数 的情况下才能取代+1。 3.将n个物品放置在m个盒子中的方案数为 C(m-1,n+m-1) 。转载于:https://www.cnblogs.com/To...
2017-10-03 19:02:00 92
转载 【Origin】
这次我想写点有用的东西。 而那种能让你我都受益的东西,在我看来,OIER最需要的就是"想法"。 所以我这次只想写的就是“想法”。 我的愿望,就是希望我的博客能成为大家交流观点的平台。期待有人鼓励,批评,因为这都将推动着你我的进步。 但愿一切都会好起来。 ...
2017-08-29 12:46:00 167
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人