DL4J中文文档/Keras模型导入/函数模型

导入Keras函数模型

假设使用Keras的函数API开始定义一个简单的MLP:

from keras.models import Model
from keras.layers import Dense, Input

inputs = Input(shape=(100,))
x = Dense(64, activation='relu')(inputs)
predictions = Dense(10, activation='softmax')(x)
model = Model(inputs=inputs, outputs=predictions)
model.compile(loss='categorical_crossentropy',optimizer='sgd', metrics=['accuracy'])

在Keras,有几种保存模型的方法。可以将整个模型(模型定义、权重和训练配置)存储为HDF5文件,仅存储模型配置(作为JSON或YAML文件)或仅存储权重(作为HDF5文件):

model.save('full_model.h5')  # save everything in HDF5 format

model_json = model.to_json()  # save just the config. replace with "to_yaml" for YAML serialization
with open("model_config.json", "w") as f:
    f.write(model_json)

model.save_weights('model_weights.h5') # save just the weights.
如果你决定保存完整的模型,那么将能够访问模型的训练配置,否则将不访问。因此,如果想在导入之后在DL4J中进一步训练模型,请记住这一点,并使用model.save(...)来持久化模型。

载加Keras模型

将完整模型加载回DL4J(假设它在类路径上):

String fullModel = new ClassPathResource("full_model.h5").getFile().getPath();
ComputationGraph model = KerasModelImport.importKerasModelAndWeights(fullModel);

万一没有编译Keras模型,它就不会有一个训练配置。在这种情况下,需要显式地告诉模型导入忽略训练配置,方法是将enforceTrainingConfig标志设置为false,如下所示:

ComputationGraph model = KerasModelImport.importKerasModelAndWeights(fullModel, false);

若要仅从JSON加载模型配置,请按如下使用KerasModelImport

String modelJson = new ClassPathResource("model_config.json").getFile().getPath();
ComputationGraphConfiguration modelConfig = KerasModelImport.importKerasModelConfiguration(modelJson)

如果另外还想加载模型权重与配置,那么需要做:

String modelWeights = new ClassPathResource("model_weights.h5").getFile().getPath();
MultiLayerNetwork network = KerasModelImport.importKerasModelAndWeights(modelJson, modelWeights)
在后面两种情况下,将不读取训练配置。

KerasModel

KerasModel(建议)

public KerasModel(KerasModelBuilder modelBuilder)
            throws UnsupportedKerasConfigurationException, IOException, InvalidKerasConfigurationException 
// 函数API模型的构建器模式构造器
参数 modelBuilder 构建器对象
抛出 IOException IO 异常
抛出 InvalidKerasConfigurationException 无效的 Keras 配置
抛出 UnsupportedKerasConfigurationException 不支持的 Keras 配置

getComputationGraphConfiguration(不推荐)

public ComputationGraphConfiguration getComputationGraphConfiguration()
            throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException 
// 来自模型配置(JSON或YAML)、训练配置(JSON)、权重和“训练模式”布尔指示符的(函数 API)模型的构造器。当内置在训练模式时,某些不支持的配置(例如,未知的正则化器)将抛出异常。当强制TrainingConfig= false时,这些将生成警告,但将被忽略。
参数 modelJson 模型配置JSON 字符串
参数 modelYaml 模型配置 YAML 字符串
参数 enforceTrainingConfig 是否实施训练相关配置
抛出 IOException IO 异常
抛出 InvalidKerasConfigurationException 无效的 Keras 配置
抛出 UnsupportedKerasConfigurationException 不支持的 Keras 配置

getComputationGraph

public ComputationGraph getComputationGraph()
            throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException 
// 从这个Keras模型配置构建计算图并导入权重
返回 ComputationGraph

getComputationGraph

public ComputationGraph getComputationGraph(boolean importWeights)
            throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException 
// 从这个Keras模型配置构建计算图并(可选的)导入权重。
参数 importWeights 是否导入权重
返回 ComputationGraph

 

 

转载于:https://www.cnblogs.com/YSPXIZHEN/p/11450762.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值