高效训练领域大语言模型的“前预训练”框架

通用大语言模型(Large Language Models,LLMs)通常需要通过进一步的预训练,以深入掌握特定领域的专业知识。为提升领域大语言模型的预训练效率,并在一定程度上降低对训练数据和资源的依赖,本文提出了一种名为PreparedLLM的“前预训练”框架。该框架旨在优化预训练过程,助力领域模型更高效地获取专业知识。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

01

研究背景

通用大语言模型(LLM)在特定领域任务中的表现受限于领域数据的稀缺性、领域语义的差异性以及领域知识的复杂性。为弥补这一不足,现有方法通常通过领域数据进行继续预训练(Continual Pretraining),以掌握该领域的专业知识并通过对齐(Alignment)提升其解决领域任务的能力。然而,继续预训练往往需要大量的训练数据和资源。在“前预训练”(Pre-pretraining,即继续预训练之前)阶段对LLM进行精细优化,不仅能够提升其训练效率,还能显著增强大语言模型的性能表现。同时,这种优化策略有助于减少对训练数据和资源的需求。

图1. 训练领域LLM的三个阶段:前预训练(得到精细优化的基座模型)、预训练(得到具备领域知识的基座模型)、对齐(得到具备解决领域任务能力的指令模型)

02

研究方法

PreparedLLM框架包括四个关键模块:数据菜谱、数据清洗、词表扩充和嵌入初始化,旨在优化领域LLM的预训练过程。

· 数据菜谱: 构建了一个多样化且大规模的预训练语料库,确保训练广泛覆盖领域内的专业知识。

· 数据清洗: 设计了精细的数据清洗流程,结合fastText、KenLM等工具快速过滤低质量数据,并通过启发式方法和正则表达式去除非法信息和隐私信息,在字符、单词、段落和文档四个层次进行数据去重,从而为LLM提供高质量的训练数据。

· 词表扩充: 采用SentencePiece在大规模地球科学语料库上训练领域词表;人工筛选高质量词表,构造了通用词表。这些词表有助于提升LLM的训练速度与推理速度。

· 嵌入初始化: 提出基于语义和噪声叠加的嵌入初始化策略,以加快LLM的收敛速度。

图2. PreparedLLM的四个模块:数据菜谱、数据清洗、词表扩充、嵌入初始化

03

研究结果

本文以地球科学领域为例,使用PreparedLLM框架对Llama-7b进行继续预训练,构建了地球科学领域大语言模型Prepared-Llama。通过OpenCompass评测框架,将Prepared-Llama与同样基于Llama-7b的地球科学大语言模型K2(其base版本,即GeoLLaMA)及原始Llama-7b进行对比。结果表明,在使用了更少训练数据量的情况下,Prepared-Llama在地球科学领域任务和通用任务中的表现非常出色(如表1和表2所示)。

表1. LLMs在地球科学任务上的表现

表2. LLMs在通用任务上的表现

为了进一步验证PreparedLLM框架中各模块对LLM性能的贡献,本文开展了消融实验,使用约10%的预训练数据进行训练。实验结果显示,数据清洗和嵌入初始化加速了模型训练过程中交叉熵损失的下降,提升了模型的收敛速度(如图3所示)。此外,词表扩充提高了模型的编解码效率,有助于提升模型的训练速度和推理速度(如表3所示)。

图3. 数据清洗和嵌入初始化对LLM收敛速度的影响

表3. PreparedLLM词表与基线模型词表性能对比

此外,本文展示了PreparedLLM优化后的Prepared-Llama在预训练过程中的性能变化趋势。由图4可见,随着训练的进行,Prepared-Llama在地球科学领域和通用评测基准上的得分持续上升,表明PreparedLLM框架在提升领域LLM训练效率和性能方面的有效性和潜力。

图4. Prepared-Llama预训练过程中的性能变化

04

研究结论

本文提出的PreparedLLM框架在“前预训练”阶段通过精细优化模型的训练过程,不仅减少了训练数据和资源需求,还显著提升了领域LLM的收敛速度、训练效率、推理速度及在领域任务和通用任务中的整体表现。PreparedLLM框架展现出作为训练领域LLM基础框架的潜力,为构建高性能的领域大语言模型提供了新的解决方案。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值