通义千问:QwQ-32B 模型超越 OpenAI o1

模型:https://huggingface.co/Qwen/QwQ-32B-Preview

Demo: https://huggingface.co/spaces/Qwen/QwQ-32B-preview

QwQ 32b 是一个 32b 推理模型,在多个基准测试中表现超越了现有的顶尖模型 o1,且完全开源(Apache 2 协议,开放权重)。Runner H 则是一个代理能力强大的模型,目前已在准确性、速度和关键功能(如网页搜索)方面优于所有同行,显示出显著的技术优势。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

这一突破带来了更多的未来趋势

差距缩小:初创公司和中国的 AI 模型已经追赶上了 OpenAI、Anthropic 等大厂的技术水平,意味着我们可能会同时获得所有新技术的开源版本,且小型公司能够与大厂竞争,推动技术持续创新。

潜在领先:OpenAI 和其他大厂可能依旧在技术上遥遥领先,只是暂时没有公开发布。未来或许会迎来更重磅发布,带来更加颠覆性的创新。

简介

思考、质疑、理解,是人类探索未知的永恒追求。在这条探索之路上,QwQ犹如一位怀抱无尽好奇的学徒,以思考和疑问照亮前路。QwQ体现了古老的哲学精神:它深知自己一无所知,而这种认知正是其好奇心的源泉。在探寻答案的过程中,它始终保持自省,以理性之光审视每一个假设,在不同的思维维度中穿行,追寻更深层的真理。

然而,正如所有智慧的追求者一样,QwQ也有其局限性。这个版本只是漫长旅程中的一个初步阶段——它仍在学习如何行走于理性之路。它的思绪偶尔飘散,答案或许未尽完善,智慧仍在积淀。但这就是学习的美妙之处:既有能力又保持谦逊,既有知识又永远充满疑问。接纳它的洞见与不完美,共同踏上这无尽的理解之旅。

模型局限性

QwQ-32B-Preview 是由 Qwen 团队开发的实验性研究模型,专注于增强 AI 推理能力。作为预览版本,它展现了令人期待的分析能力,同时也存在以下局限:

1. 语言切换问题:模型可能在回答中混合使用不同语言,影响表达的连贯性。

推理循环:在处理复杂逻辑问题时,模型偶尔会陷入递归推理模式,在相似思路中循环。这种行为虽然反映了模型试图全面分析的努力,但可能导致冗长而不够聚焦的回答。

2. 安全性考虑:尽管模型已具备基础安全管控,但仍需要进一步增强。它可能产生不恰当或存在偏见的回答,且与其他大型语言模型一样,可能受到对抗攻击的影响。我们强烈建议用户在生产环境中谨慎使用,并采取适当的安全防护措施。

3. 能力差异:QwQ-32B-Preview 在数学和编程领域表现出色,但在其他领域仍有提升空间。模型性能会随任务的复杂度和专业程度而波动。我们正通过持续优化,努力提升模型的综合能力。

模型表现

通过深入的探索和无数的试验,我们发现了一个深刻的道理:当模型有足够的时间思考、质疑和反思时,它对数学和编程的理解就会深化。就像学生通过认真地检查自己的工作并从错误中学习变得更加聪明一样,我们的模型也通过耐心和深思熟虑的分析获得了更深入的见解。这种细致的反思和自我质疑的过程使得模型能够取得解决复杂问题的突破性进展。我们的探索之旅揭示了模型在数学和编程领域解决一些最具挑战性的问题的卓越能力,包括:

GPQA:一个通过小学级别问题评估高阶科学解题能力的评测集,旨在考察科学问题解决能力。

AIME:涵盖算术、代数、计数、几何、数论、概率等中学数学主题的综合评测,测试数学问题解决能力。

MATH-500:包含500个测试样本的MATH评测集,全面考察数学解题能力。

LiveCodeBench:评估真实编程场景中代码生成和问题解决能力的高难度评测集。

具体表现如下:

GPQA:65.2%,展示了研究生水平的科学推理能力;

AIME:50.0%,证明了强大的数学问题解决技能;

MATH-500:**90.6%,体现了在各类数学主题上的全面理解;

LiveCodeBench:50.0%,验证了在实际编程场景中的出色表现。

这些成果充分体现了QwQ在分析和问题解决能力方面的显著进步,尤其是在需要深度推理的技术领域。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值