线性dp+离散化 POJ - 3666 Making the Grade

https://vjudge.net/problem/POJ-3666

题意:将一条路上的坑坑洼洼修补成单调的,求最小费用。

分析:明显是线性dp,image.png

如图,但 j 的数据太大, 就sort 一下用坐标表示达到离散化,并且每次找所有小于 j 的 k 的最小值,时间复杂度会变成三次方,所以要用Min 在 j 循环下记录最小值可以让复杂度变成平方。最后还可以用滚动数组节约空间。

可以参考这篇博客https://www.cnblogs.com/vb4896/p/5877962.html 里面还有个nlogn 的方法

 

#include<iostream>
#include<cstdio>
#include<algorithm>
#define Abs(a) ((a)>=0?(a):-(a))
using namespace std;

typedef long long ll;
const int maxn=2e3+9;
int a[maxn],b[maxn];
int dp[maxn];

int main(){
    int n;
    scanf("%d",&n);
    for(int i=1; i<=n; i++){
        scanf("%d",&a[i]);
        b[i]=a[i];
    }
    sort(b+1,b+1+n);        

    int Min;
    for(int i=1; i<=n; i++){
        Min=1e9+1;
        for(int j=1; j<=n; j++){
            Min = min( Min,dp[j] );
            dp[j] = Min +Abs( a[i]-b[j] );
        }
    }

    // for(int i=1; i<=n; i++){
    //     for(int j=1; j<=n; j++){
    //         printf("%d ",dp[i][j]);
    //     }
    //     puts("");
    // }

    int ans = dp[1];
    for(int i=2; i<=n; i++){
        ans = min(ans,dp[i]);    
    }

    printf("%d\n",ans);
}
下面是不用滚动数组的
//不用滚动数组的
#include<iostream>
#include<cstdio>
#include<algorithm>
#define Abs(a) ((a)>=0?(a):-(a))
using namespace std;

typedef long long ll;
const int maxn=2e3+9;
int a[maxn],b[maxn];
int dp[maxn][maxn];

int main(){
    int n;
    scanf("%d",&n);
    for(int i=1; i<=n; i++){
        scanf("%d",&a[i]);
        b[i]=a[i];
    }
    sort(b+1,b+1+n);        

    int Min;
    for(int i=1; i<=n; i++){
        Min=1e9+1;
        for(int j=1; j<=n; j++){
            Min = min( Min,dp[i-1][j] );
            dp[i][j] = Min +Abs( a[i]-b[j] );
        }
    }

    // for(int i=1; i<=n; i++){
    //     for(int j=1; j<=n; j++){
    //         printf("%d ",dp[i][j]);
    //     }
    //     puts("");
    // }

    int ans = dp[n][1];
    for(int i=2; i<=n; i++){
        ans = min(ans,dp[n][i]);    
    }

    printf("%d\n",ans);
}
View Code

 

转载于:https://www.cnblogs.com/-Zzz-/p/11417124.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值