组合数 (选定思想) dp cf1000D - Yet Another Problem On a Subsequence

http://codeforces.com/problemset/problem/1000/D

参考自:https://www.cnblogs.com/hua-dong/p/9238795.html

题意:给定序列,问有多少子序列(不一定连续),满足可以划分为若干个组,给个组的第一个等于区间长度-1;

思路:关键就在于区间的开头,由此我们从后往前考虑,dp[ i ] 表示以 i 开头,满足题意的数量,sum[ i ] 表示 i 及以后所有的可能情况。

对于 i ,可选的区间为 [ i , j ] , j 的范围是 i+a[ i ] ~ n,再利用选定的思想,这一段区间的可能情况就有 C (  a[ i ] -1 , j - i -1 ) ,接着,再乘上(1+sum[ j +1 ]),

这就是对乘法思想的利用,而这个 1 代表只选前面一个段的情况,通过不断的累加就得到 dp[ i ],再累加就得到 sum[ i ]。

 

#include<bits/stdc++.h>
#define ll long long 
using namespace std;
const int Mod=998244353;
const int maxn=1010;
int a[maxn],dp[maxn],sum[maxn];
int c[maxn][maxn],ans;
int main()
{
    int N,i,j;
    scanf("%d",&N);
    for(i=0;i<=N;i++) c[i][0]=1,c[i][1]=i,c[i][i]=1;
    for(i=1;i<=N;i++)
     for(j=1;j<=N;j++)
       c[i][j]=(c[i-1][j]+c[i-1][j-1])%Mod;
    for(i=1;i<=N;i++) scanf("%d",&a[i]); 
    for(i=N;i>=1;i--){
        if(a[i]>0&&i+a[i]<=N){
            for(j=i+a[i];j<=N;j++){
                (dp[i]+=(ll)c[j-i-1][a[i]-1]*(1+sum[j+1])%Mod)%=Mod;  //这里的1是指只有一个段的情况
                printf("%d %d \n", c[j-i-1][a[i]-1],(1+sum[j+1]));
            }
        }
        sum[i]=(sum[i+1]+dp[i])%Mod;
        // printf("%d\n", sum[i]);
    }
    printf("%d\n",sum[4]);
    return 0;
}









// #include <iostream>
// #include <cstdio>
// #include <cstdlib>
// #include <cstring>
// #include <cmath>
// #define qwq(i,j,k)      for(int i=j; i<k; ++i)
// #define qeq(i,j,k)      for(int i=j; i<=k; ++i)
// #define mem(a,b)        memset(a, b, sizeof(a))
// using namespace std;
// typedef long long ll;
// const int mx = 1e5+5;
// const int maxn = 3e3+5;
// const int inf= 0x3f3f3f3f;
// // const ll mod = 1e9+7;
// const ll INF = 1e18+100;
// int n, m;
// int cas, tol, T;

// ll C[maxn][maxn];
// ll fac[mx]; //i!
// ll inv[mx]; //i!在取模mod的情况下的逆元

// // ll fpow(ll a, ll b) {
// //     ll ans = 1;
// //     while(b) {
// //         if(b & 1)
// //             ans = ans * a % mod;
// //         a = a * a % mod;
// //         b >>= 1;
// //     }
// //     return ans;
// // }

// const ll mod=998244353;
// void handle() {
// //    fac[0] = 1;
// //    for(int i=1; i<=mx; ++i) {
// //        fac[i] = fac[i-1]*i%mod;    //阶乘的表
// //    }
// //    inv[mx] = fpow(fac[mx], mod-2);
// //    for(int i=mx-1; i>=1; --i) {
// //        inv[i] = inv[i+1] * (i+1) % mod;
// //    }
//     C[0][0] = 1;
//     C[1][0] = C[1][1] = 1;
//     for(int i=2; i<maxn; ++i) {
//         for(int j=0; j<=i; ++j) {
//             C[i][j] = j==0 ? 1 : (C[i-1][j]%mod+C[i-1][j-1]%mod)%mod;
//         }
//     }
// }

// ll a[maxn];
// ll b[maxn];
// ll ans;

// int main() {
//     //打表O(N^2)   n 1e3左右
//     handle();
//     // for(int i=1; i<=10; ++i) {
//     //     for(int j=0; j<=i; ++j) {
//     //         printf("C[%d][%d] = %lld\n", i, j, C[i][j]);
//     //     }
//     // }
//     ans=0;
//     scanf("%d",&n);
//     for(int i=1; i<=n; i++){
//         cin>>a[i];
//     }
//     for(int i=1; i<=n; i++){
//         if(a[i]>0 && a[i]+i<=n){
//             b[i] = C[n-i][ a[i] ];
//         }
//     }
//     for(int i=n-1; i>=1; i--){
//         if(b[i]!=0){
//             ll sum=0;
//             for(int j=n-1; j>=i+a[i]+1; j--){
//                 // if(a[j]>0 && a[j]+j<=n){
//                     b[i] += b[j];

//                 // }
//               // if(i==4) printf("b[4]=%lld\n", b[i]);
//             }
//             // b[i] = (b[i]%mod + b[ i+a[i]+1 ]%mod)%mod;
//             ans = (ans+b[i])%mod;
//         }   
//     }
//     printf("%d\n", b[2]);
//     cout<<ans<<endl;

//     return 0;
// }

 

转载于:https://www.cnblogs.com/-Zzz-/p/11427423.html

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
内容概要:PT500PLUS平行轴齿轮箱故障测试台是由瓦伦尼安(VALENIAN)Machine Vibration & Gearbox Simulator(机械振动-齿轮箱模拟器)开发的专业机械故障仿真测试设备。该测试台旨在模拟和研究转子、齿轮传动、轴承及电机系统中的多种常见故障,包括但不限于轴不对中、转子不平衡、机械松动、轴承故障、齿轮故障(如点蚀、磨损、断齿等)以及电机故障(如转子不平衡、轴承故障、匝间短路等)。测试台配备有先进的传感器和数据采集系统,能够实时采集并分析振动、噪声、转速、扭矩等参数,提供多通道同步信号采集与频谱分析功能。此外,测试台还配备了10寸触摸屏、PLC智能控制系统和急停按钮,确保操作简便和安全。 适用人群:机械工程专业师生、科研人员以及从事机械故障诊断和维护的技术人员。 使用场景及目标:①用于高校和科研机构的教学和研究,帮助学生和研究人员深入理解机械故障的机理;②为企业提供故障诊断和预防性维护的解决方案,提高设备可靠性和运行效率;③通过模拟真实工况下的故障,进行轴承寿命预测性试验,研究轴承故障机制与轴承载荷、转速、振动、温度之间的关系。 其他说明:测试台结构紧凑,模块化设计,便于移动和维护。它不仅支持多种传感器的安装和数据采集,还提供了丰富的分析软件功能,如FFT频谱分析、轴心轨迹图、小波分析等,支持数据导出和二次开发,适用于各种复杂的研究和应用需求。
<think>好的,我现在要帮用户调试他的CF1000F代码。用户说他遇到了问题,需要调代码。首先,我需要仔细阅读他的代码,理解他的思路,然后找出可能存在的错误。 首先,题目是CF1000F One Occurrence,题目大意是给定一个数组,每次询问一个区间[l, r],找出其中恰好出现一次的数,如果有多个,输出任意一个,如果没有输出0。用户使用了莫队算法来解决这个问题,因为莫队算法适合处理离线查询,尤其是区间询问的问题。 接下来,我需要仔细阅读代码,看看他的实现是否正确。 首先,代码的结构: 1. 头文件包含和命名空间,没问题。 2. 定义变量n, q,数组a,分块数组bl,块长度kuai_len。 3. 结构体node用来存储每个查询的l, r, tim(即查询的顺序),并且重载了运算符,用于莫队的排序。 4. 然后定义了s数组,sum数组,ans数组和cnt变量。 5. js函数用来计算答案,应该是找到出现次数恰好为1的数。 6. 主函数中读入n,计算块长,读入数组a,处理查询,排序,然后使用莫队的四个while循环处理区间的移动,维护sum和s数组,最后调用js得到答案。 现在,我需要逐一检查各个部分是否正确。 首先,分块排序的部分。莫队的排序通常是将区间分块,按照块号排序,奇偶块分别按右端点升序或降序。用户的比较函数是: friend bool operator <(node t1, node t2){ return bl[t1.l] == bl[t2.l] ? (t1.r == t2.r ? 0 : (bl[t1.l] & 1) ^ (t1.r < t2.r)) : t1.l < bl[t2.l]; } 这里可能存在错误。在比较两个节点的块号相同时,如果它们的右端点相同,则返回0?但operator <应该返回true或false,而此处当bl[t1.l]等于bl[t2.l]时,进入条件判断,如果t1.r等于t2.r的话,返回0,这在布尔上下文中会被视为false。而后面部分则是(bl[t1.l] & 1) ^ (t1.r < t2.r),这似乎是想实现奇偶块排序,即如果块号是奇数,则右端点升序,偶数则降序?或者相反? 但这里可能存在错误。比如,当两个查询的块号相同且右端点不相等时,表达式是(块号的奇偶性)异或(t1.r是否小于t2.r)。这可能不符合常规的奇偶分块排序方式。常规的写法是如果块是奇数,则按右端点升序;如果是偶数块,则按右端点降序。例如: return (bl[t1.l] & 1) ? (t1.r < t2.r) : (t1.r > t2.r); 但用户的写法是异或操作,这可能有问题。例如,假设bl[t1.l]是奇数(即&1结果为1),那么当t1.r < t2.r时,1 ^ 1(因为t1.r < t2.r是true,即1)等于0,即返回false,所以此时排序会认为t1不应该排在t2前面?这可能与预期相反。或者用户可能想用异或来切换排序顺序,但这段逻辑是否正确需要仔细分析。 可能的问题出在这里。正确的奇偶块排序应该根据块的奇偶性来决定右端点的排序方向,而用户的写法是否正确? 例如,假设块号为奇数时,我们希望右端点升序排列,则当bl[t1.l]是奇数时,返回t1.r < t2.r。如果块号是偶数,则右端点降序排列,返回t1.r > t2.r。但用户的写法是(块号奇偶性)异或(右端点是否更小)。例如,当块号是奇数时,表达式为1 ^ (t1.r < t2.r)。如果t1.r < t2.r为true(即1),则结果是0,此时该条件为假,所以整个表达式返回false,即t1不应该排在t2前面,这可能导致排序顺序错误。这可能是一个错误点。 例如,当块号为奇数时,我们希望t1.r < t2.r时返回true,所以正确的条件应该是当块号为奇数时,返回t1.r < t2.r;当块号为偶数时,返回t1.r > t2.r。而用户的写法将导致不同的结果,这可能导致莫队移动右指针的效率降低,但可能不影响正确性,只是时间效率的问题。但如果是这样,用户的时间复杂度可能过高导致TLE。但用户的问题可能不是时间问题,而是答案错误。 此外,在比较运算符中,当bl[t1.l] == bl[t2.l]的情况下,如果t1.r == t2.r,那么返回的是0,也就是false,这可能导致排序不稳定。不过,在结构体中,比较运算符的正确性需要满足严格弱序。但此处可能没问题,但需要确认。 另一个可能的错误点在于分块的大小。用户将块长设置为pow(n,0.5),即根号n。这在莫队算法中是常规的做法,但有时候对于不同的数据范围可能需要调整块的大小。不过暂时看不出问题。 接下来,看sum数组的作用。sum[x]记录的是当前区间内x出现的次数。s数组的每个块(每个块的大小是kuai_len?)记录的是该块中有多少个数的出现次数是奇数次?或者s数组的作用可能不正确。 看用户的代码中的处理逻辑: 当移动指针时,比如pl左移,处理元素a[pl]。此时sum[a[pl]]的旧值是原来的次数。比如,当sum[a[pl]]原来是1,现在增加1变成2,此时sum变成2,此时因为原来的次数是1(恰好出现一次),所以在sum[a[pl]]增加之前,如果sum原来是1,那么s对应的块中的数目要减1,并且cnt减1。然后如果sum增加到新的状态,比如如果原来sum是0,那么现在变成1,此时s对应的块加1,cnt加1? 这部分逻辑是否正确? 具体来说,当处理一个元素被加入区间时,比如指针移动到包含这个元素: 例如,在pl左移的时候,--pl,此时将a[pl]加入到当前区间。sum[a[pl]]在增加之前的值是原来的次数。比如,原sum是1,那么在增加之前,该元素的出现次数是1,所以当现在加1之后,sum变成2。此时,原来的sum是1,意味着该元素之前是恰好出现一次的,现在变成两次,所以应该从s对应的块中减去1,并且cnt(总共有多少元素的出现次数是1)减1。但是如果原来的sum是0,那么加1之后变成1,此时应该将s对应的块加1,并且cnt加1。 这部分逻辑是否正确? 看代码中的处理: 当pl左移时(扩大区间到左): 例如,当处理新元素a[pl]时,先判断sum[a[pl]]原来的值是否是1。例如,在增加之前,sum的值是原来的次数。例如,假设原来的sum是1,现在执行++sum[a[pl]],那么sum变成2。此时,原来的sum是1,所以进入if(sum[a[pl]]==1)的条件,但此时是在增加之前还是之后?这里可能存在问题。 例如,用户在增加sum[a[pl]]之前,先检查sum[a[pl]]的值是否为1。例如,在--pl之后,执行以下代码: if(sum[a[pl]] == 1) s[...]--, --cnt; 这里,sum[a[pl]]是在增加之前吗?例如,假设原来的sum是1,现在要执行++sum[a[pl]]。此时,在增加之前,sum是1。所以,如果sum[a[pl]]原来的值是1,那么在增加之后,该元素的出现次数变为2。此时,需要从s对应的块中减去1(因为原来的出现次数是1,现在变为2,所以该块中对应的数目要减少),同时总共有cnt个出现次数为1的元素,此时这个元素不再出现一次,所以cnt要减1。然后,如果原来的sum是0,那么在增加之后变成1,这时候需要将s对应的块加1,同时cnt加1。 所以,这里的处理逻辑是否正确? 例如,在代码中: 当pl左移到某个位置时,处理a[pl]: if(sum[a[pl]] == 1) s[...]--, --cnt; else if(sum[a[pl]] == 0) s[...]++, ++cnt; 然后,执行++sum[a[pl]]。 这似乎有问题。因为sum[a[pl]]在条件判断的时候是原来的值,而处理的是在增加之前的情况。例如,假设原来的sum是1,那么在条件判断时sum是1,所以进入第一个分支,s的块减1,cnt减1。之后,执行++sum,变成2。这正确,因为该元素的出现次数从1变到2,所以应该从出现一次的集合中移除。 而如果原来的sum是0,那么进入第二个分支,s块加1,cnt加1,然后sum变成1。这正确,因为该元素现在出现一次。 那这个处理逻辑是正确的。同理,其他移动指针的部分是否也正确? 例如,当pr右移时(扩大区间到右),处理a[pr]: 同样的逻辑。在增加sum之前,检查原来的sum值,如果是1,则处理s和cnt,之后增加sum。这部分是正确的。 当pl右移时(区间左端缩小),处理的是a[pl],此时需要减少sum。例如,sum原来的值是原来的次数,在减少之后的值是多少? 例如,原来的sum是2,减少之后是1。此时,原来的sum是2,所以条件判断sum[a[pl]] ==1吗?此时sum还是原来的值。例如,用户处理流程是: 在移动pl的时候,比如pl要右移,所以先处理当前pl的位置的元素: --sum[a[pl]]; 然后,根据sum的新值,判断是否需要调整s和cnt。例如,如果sum变成1,那么s块加1,cnt加1?或者原来看的是原来的值? 看用户的代码: 在pl右移时的处理: 例如,当pl < b[i].l时,需要将pl右移。此时: --sum[a[pl]]; 然后,判断: if(sum[a[pl]] ==1) s[...] ++, --cnt; else if(sum[a[pl]] ==0) s[...] --, ++cnt; 这里似乎有问题。比如,原来的sum是x,减少之后变成x-1。那么,sum的当前值是x-1。比如,如果原来的sum是2,减少到1,那么sum现在等于1,所以进入第一个条件,s块加1,并且cnt减少?这似乎反过来了。 例如,当sum从2减到1时,该元素的出现次数变为1,所以应该被加入到s块中,并且cnt(出现次数为1的总数)应该增加。但用户的代码中,如果sum[a[pl]] ==1,则s块加1,同时cnt减1?这显然错误。 例如,假设原来的sum是2,减到1。此时,sum现在是1。这个元素的出现次数变为1,所以应该被加入到出现次数为1的集合中。所以,对应的块s中该元素的块应该加1,而总共有cnt需要加1。但用户的代码中是: -- sum[a[pl]]; 之后: if(sum[a[pl]] ==1) s[...] ++, -- cnt; 这显然错误,因为当sum变为1时,说明该元素的出现次数现在变成1,所以应该将对应的块s中该元素的块数目加1,同时总共有cnt(出现次数为1的元素数目)加1。但用户的代码里,是执行s[...]++,但是cnt是--cnt,这显然错误。这可能就是问题所在。 同样的错误出现在处理所有指针移动的地方,特别是当sum减少的时候。 例如,在处理pl右移的情况: 原来的sum是x,减1后变成x-1。如果sum现在等于1,说明该元素的出现次数现在变为1,所以应该将该元素对应的块数目加1,并且总出现次数为1的元素数目加1。但是用户的代码里,当sum[a[pl]] ==1时,执行s块加1,同时--cnt。这显然错误,因为此时该元素的出现次数是1,应该被加入到出现次数为1的集合中,cnt应该增加,而不是减少。 同样的错误出现在其他类似的指针移动情况,比如pr左移的时候: 当pr左移时,sum[a[pr]]减少1。如果减少后的sum等于1,此时应该s块加1,并且cnt加1。但在用户代码中,当sum[a[pr]] ==1时,s块加1,同时cnt减1。这明显是错误的。 这说明,在处理sum减少的情况时,用户的逻辑错误,导致cnt和s数组的维护不正确,从而影响最终的答案。 例如,假设原来的sum是2,现在减到1,那么sum ==1,此时应该将该元素加入出现一次的集合,所以s对应块加1,并且cnt加1。但用户的代码中是: if(sum[a[pl]] ==1) s[...] ++, --cnt; 这会导致cnt减少,而正确的情况是应该增加。所以,这个条件处理中的cnt的加减符号是反的。 同样的错误出现在四个指针移动的所有情况中。例如,在扩大区间的时候(比如pl左移,pr右移),处理sum的增加,此时的逻辑是否正确? 例如,当sum[a[pl]]原来等于1时,在增加后变成2,所以此时应该将该元素从出现一次的集合中移除。所以,s块减1,cnt减1。这部分是正确的吗? 例如,在pl左移时的处理: if(sum[a[pl]] ==1) s块减1,cnt减1; 然后sum[a[pl]]++。这正确,因为原来的sum是1,现在增加到2,所以该元素不再出现一次,所以对应的s块数目减少,cnt减少。这部分正确。 同样,当sum原来等于0时,增加到1,此时s块加1,cnt加1,这部分也正确。 所以,在扩大区间(增加元素到当前区间)的时候,处理是正确的。但在缩小区间(减少元素)的时候,处理是错误的,因为当sum减少到1时,应该增加cnt,而不是减少。同样的,当sum减少到0时,说明该元素的出现次数从1变为0,所以应该从出现一次的集合中移除,所以s块减1,cnt减1。但用户代码中的处理是: 当sum[a[pl]] ==0时,执行s块减1,cnt加1? 例如,假设sum原来是1,减到0。此时,原来的出现次数是1,现在变成0。所以应该从s块中移除该元素,同时总出现次数为1的数目减1。所以,s块减1,cnt减1。但用户代码中的处理是: else if(sum[a[pl]] ==0) s[...] --, ++cnt; 这会导致cnt加1,而正确的处理应该是cnt减1。这显然错误。 综上,在指针移动导致sum减少的情况下,用户在处理sum变化后的逻辑是错误的: 当sum减少到1时,应该增加cnt; 当sum减少到0时,应该减少cnt(如果sum原来是1的话)。 例如,在sum减少后的处理: 假设原来的sum是x,现在变成x-1。 如果x-1 ==1,说明该元素现在出现一次,应该被加入到出现一次的集合中。因此,s对应的块数目加1,cnt加1。 如果x-1 ==0,说明该元素之前出现一次,现在被移除,所以应该从s块中减1,cnt减1。 所以,正确的处理应该是: 当sum减少后,检查新的sum值: 例如,在--sum[a[pr]]之后: if (sum[a[pr]] ==1) { s块的对应位置加1; cnt +=1; } else if (sum[a[pr]] ==0) { s块的对应位置减1; cnt -=1; } 但用户代码中的处理是: 在pl右移时(即sum减少): --sum[a[pl]]; if(sum[a[pl]] ==1) s[...]++, --cnt; else if(sum[a[pl]] ==0) s[...]--, ++cnt; 这里,当sum变成1时,用户将cnt减1,这是错误的。正确的应该是cnt加1。同样,当sum变成0时,用户将cnt加1,而正确的应该是cnt减1。 这说明在处理sum减少的情况时,cnt的操作符号完全颠倒了。 同样的错误出现在pr左移的处理部分: 例如,当pr左移时,处理a[pr]的sum减少: --sum[a[pr]]; if(sum[a[pr]] ==1) s[...] ++, --cnt; else if(sum[a[pr]] ==0) s[...]--, ++cnt; 这里的cnt的加减也是错误的。 所以,这四个指针移动的情况中的sum减少时的处理逻辑全部错误,导致cnt和s数组的维护不正确,进而导致js函数无法正确找到出现一次的元素。 因此,需要将所有在sum减少的情况下,当sum变成1或0时,调整cnt的方式反转。 例如,当sum减少到1时,应该增加cnt,而用户现在是在减少cnt;当sum减少到0时,应该减少cnt,但用户代码中是在增加。 因此,正确的处理应该是: 在sum减少后的处理: 当sum变成1时: s块加1,cnt加1。 当sum变成0时: s块减1,cnt减1。 例如,在pl右移时的代码: --sum[a[pl]]; if(sum[a[pl]] ==1) { s[a[pl]/kuai_len]++; cnt++; } else if(sum[a[pl]] ==0) { s[a[pl]/kuai_len]--; cnt--; } 而用户代码中,这部分是: if(sum[a[pl]] ==1) s[...] ++, --cnt; else if(...) s[...]--, ++cnt; 所以,将--cnt改为++cnt,将++cnt改为--cnt。也就是说,在sum减少后的处理中,当sum等于1时,cnt应该加1,当sum等于0时,cnt应该减1。 因此,用户代码中的这四个部分的逻辑错误是导致答案错误的主要原因。 另一个可能的错误点是js函数的实现。js函数的作用是遍历s数组中的块,找到第一个非空的块,然后在该块中寻找出现次数为1的元素。 例如,js函数中的逻辑: int js(){ if(cnt ==0) return 0; for(int i=0; i<=6000; i++){ if(s[i]){ for(int j=(i-1)*kuai_len +1; ;j++){ if(sum[j] ==1) return j; } } } } 这里存在几个问题: 1. s数组的大小是6010,而sum数组的大小是500010。kuai_len的计算是sqrt(n),即n^0.5。假设n是5e5,那么kuai_len约为707。所以,每个块的大小是707,那么块的数目是5e5 /707 ≈ 707块。因此,s数组的大小6010是足够的。但用户在这里的循环是i<=6000,这可能没问题。 2. 在循环块的时候,i从0开始。当找到某个块i,其中s[i]非零时,用户尝试在该块中寻找sum[j]等于1的j。但是这里的j的起始计算有问题: j = (i-1)*kuai_len +1; 例如,当i=0时,(i-1)-1,乘以kuai_len后得到负数,可能导致j的起始位置错误。例如,假设i=0,那么块的起始位置应该是0*kuai_len +1 =1,但用户的计算是(i-1)*kuai_len +1,即当i=0时,j的起始是 (-1)*kuai_len +1,这明显是错误的。 这导致块i的起始位置计算错误。例如,块i对应的元素范围应该是i*kuai_len +1 到 (i+1)*kuai_len。或者,可能分块的方式不是这样的。例如,当块的大小是kuai_len时,块i对应的元素是 [i*kuai_len +1 , (i+1)*kuai_len ]。或者,可能分块方式是按元素的值来分块,每个块处理的值范围是 i*kuai_len 到 (i+1)*kuai_len -1。例如,元素x属于块x / kuai_len。这可能更合理。比如,x的块号是x / kuai_len。那么块i对应的元素是i*kuai_len到(i+1)*kuai_len -1。 例如,当kuai_len是707时,块0对应的元素是0~706,块1是707~1413,等等。所以在js函数中,当找到块i时,应该遍历该块内的所有元素,即从i*kuai_len到 (i+1)*kuai_len -1。例如,j的起始是i*kuai_len,然后到i*kuai_len + kuai_len -1。例如,假设i=0,块内的元素是0到kuai_len-1。然而,a数组中的元素可能很大(比如到5e5),所以当遍历的时候,需要检查j的范围是否有效,比如j不能超过可能的最大值。 而用户的代码中,当块i存在时,循环j的初始值是 (i-1)*kuai_len +1。这显然错误,因为比如当i=0时,初始值是负数,而循环是无限的,除非找到sum[j]等于1的j。这将导致死循环或者访问越界。 这可能是一个更严重的错误。例如,当s[i]非零时,用户试图遍历该块中的元素,但块的起始计算错误。 例如,假设当前块是i,那么该块包含的元素x满足x / kuai_len == i。所以,x的范围是i*kuai_len <=x < (i+1)*kuai_len。例如,当kuai_len=707,i=0时,x的范围是0~706;i=1时,707~1413,等等。因此,块i对应的元素是i*kuai_len到(i+1)*kuai_len-1。 因此,在js函数中,当处理块i时,正确的起始位置是i*kuai_len,结束位置是i*kuai_len + kuai_len -1。或者,在代码中,用户可能应该从i*kuai_len开始遍历到 (i+1)*kuai_len -1,或者在找到第一个sum[j]等于1的元素后返回。 而用户当前的代码中,块i对应的起始位置是 (i-1)*kuai_len +1,这明显错误。例如,当i=0时,(i-1)*kuai_len +1 = -kuai_len +1,这导致j从负数开始循环,显然不正确。 因此,js函数中的循环起始错误,导致无法正确找到对应的元素,从而返回错误的答案。例如,当块i=0时,用户从负数开始遍历,而实际上应该从i*kuai_len开始,即0*kuai_len=0。但元素的值可能从1开始,或者可能包含0? 这取决于题目中数组a的元素范围。题目中数组a的元素没有说明,但根据代码中的处理,sum数组的大小是500010,所以假设元素的值可能到5e5。所以,当元素的值是0时,可能也是一个可能的值。但原题中,数的范围可能没有0,或者可能包括? 但不管怎样,块i的起始位置计算错误。例如,在js函数中,正确的做法应该是: 当处理块i时,元素的x满足x属于块i,即x >= i*kuai_len且x < (i+1)*kuai_len。因此,遍历的起始位置应为i*kuai_len,结束位置为(i+1)*kuai_len -1。或者,可能从i*kuai_len开始,遍历到足够的范围,确保覆盖所有可能的值。 因此,用户代码中的循环起始是错误的,导致无法正确遍历正确的块中的元素。例如,当块i=0时,遍历的起始位置应该是0*kuai_len=0,而用户代码中是(i-1)*kuai_len +1= -kuai_len+1,这显然错误。 所以,在js函数中,块i对应的起始位置应该是i*kuai_len,例如: for(int j = i * kuai_len; j < (i+1)*kuai_len; ++j) { if(sum[j] ==1) return j; } 或者,如果元素的最小值是1的话,可能需要调整。但无论如何,当前的起始位置是错误的。 例如,用户代码中的块i的起始计算是(i-1)*kuai_len +1,这显然错误。例如,当i=0时,得到负数,这显然不正确。正确的应该是i*kuai_len。所以,这里需要修改循环的起始位置。 这可能是一个更严重的错误,导致无法找到正确的元素,从而返回错误答案。 例如,假设正确的块i的起始位置是i*kuai_len,那么用户代码中的循环起始是(i-1)*kuai_len +1,这可能导致遍历的位置完全错误,甚至进入死循环。 例如,假设kuai_len=3,块i=1的正确起始位置是3,而用户代码中的起始是(1-1)*3 +1=1,这会导致遍历1、2、3等,而实际块i=1对应的元素是3、4、5。这样,用户代码会遍历错误的区间,导致无法找到正确的元素,或者遍历到其他块中的元素。 因此,js函数中的遍历起始错误,必须修正。正确的起始应该是i*kuai_len,而不是(i-1)*kuai_len +1。 此外,在js函数的循环中,当找到某个块i后,用户进入一个无限循环,直到找到sum[j]等于1的j。例如,在块i中可能存在多个元素,其中某些sum[j]等于1,但用户代码中的循环是无限循环,j不断增加,直到找到符合条件的j。但块i的范围是有限的,所以必须限制j的范围不超过块i的最大值。否则,当块中没有符合条件的元素时,会导致死循环。 例如,正确的做法应该是遍历块i中的每个可能的j,即从i*kuai_len到 (i+1)*kuai_len -1,检查每个j的sum是否为1,找到第一个符合条件的j。如果没有找到,继续下一个块。但在用户代码中,循环没有终止条件,当块i中的sum[j]没有等于1的元素时,循环会无限继续,导致TLE或者错误。 这可能是因为用户误以为块i的s[i]非零,说明其中存在sum[j]等于1的元素。但实际上,s数组的维护可能存在问题,导致s[i]记录的并不是块i中存在sum[j]==1的元素数目。或者,可能s数组的维护正确,此时当s[i]非零时,该块中必定存在sum[j]==1的元素,所以循环可以找到。 那么,用户代码中的s数组的作用是什么? 在指针移动的处理逻辑中,当sum[a[x]]变为1时,s数组的对应块会加1;当sum[a[x]]变为0时,s数组的对应块减1。例如,s数组的每个元素记录的是该块中sum[j]等于1的元素数目。这样,当s[i]非零时,该块中存在至少一个元素j,sum[j]等于1。 因此,当调用js函数时,如果cnt>0,那么至少存在一个块i,其中s[i]>0。所以,在js函数中,当找到s[i]>0的块时,该块中必定存在sum[j]==1的元素。因此,循环可以一直增加j,直到找到这样的元素。但是,j的起始位置必须正确,否则可能会遍历错误的区域。 因此,用户代码中的循环起始错误,导致无法正确找到元素,而进入错误的位置或者死循环。 所以,修正js函数中的循环起始为i*kuai_len,例如: for(int j = i * kuai_len; ; ++j) { if(sum[j] ==1) return j; } 但是,这种方法可能需要遍历整个块,但假设s[i]>0,那么该块中必定存在sum[j]==1的元素,所以循环会找到。因此,用户需要确保循环的起始位置正确,并且遍历的是块i中的元素。 所以,正确的起始应该是i*kuai_len,而不是(i-1)*kuai_len +1。 因此,用户代码中的js函数中的循环起始错误,需要修改。 总结目前发现的错误: 1. 在指针移动导致sum减少时,处理cnt的加减符号错误。例如,当sum减少到1时,应该cnt加1,而用户代码中是减1;当sum减少到0时,应该cnt减1,而用户代码中是加1。 2. js函数中的块遍历起始位置错误,导致无法正确找到元素。 此外,可能还存在其他错误,比如块排序的比较函数是否正确。 接下来,我需要针对这些错误提出修改建议。 首先,处理sum减少时的逻辑错误: 在四个指针移动的部分,即: - while(pl > b[i].l) 的部分:处理扩大左边界,此时sum增加,逻辑正确。 - while(pr < b[i].r) 的部分:处理扩大右边界,sum增加,逻辑正确。 - while(pl < b[i].l) 的部分:处理缩小左边界,sum减少,逻辑错误。 - while(pr > b[i].r) 的部分:处理缩小右边界,sum减少,逻辑错误。 例如,在缩小左边界时: 原代码: --sum[a[pl]]; if(sum[a[pl]] ==1) s[...] ++, --cnt; else if(sum[a[pl]] ==0) s[...] --, ++cnt; 正确应改为: if(sum[a[pl]] ==1) s[...] ++, ++cnt; else if(sum[a[pl]] ==0) s[...] --, --cnt; 类似地,在缩小右边界时: --sum[a[pr]]; if(sum[a[pr]] ==1) s[...] ++, --cnt; else if(...) ... 同样需要将cnt的操作符号反转。 因此,这四个部分的处理需要将所有在sum减少后,sum等于1的情况中的cnt的符号改为加,sum等于0的情况中的cnt的符号改为减。 例如,修改后的代码如下: 在处理pl右移(缩小左边界)时: while(pl < b[i].l){ -- sum[a[pl]]; if(sum[a[pl]] == 1) { s[a[pl] / kuai_len] ++; cnt ++; } else if(sum[a[pl]] == 0) { s[a[pl] / kuai_len] --; cnt --; } ++ pl; } 同样的处理需要应用到其他三个sum减少的情况。 第二个错误是js函数中的循环起始错误。应将j的初始值改为i*kuai_len,例如: for(int j = i * kuai_len; ; ++j){ if(sum[j] ==1) return j; } 这样,当块i存在元素时,会从该块的起始位置开始遍历,直到找到第一个sum[j]==1的元素。 此外,还需要确保遍历的j不超过可能的数值范围,但由于sum数组的大小足够大(500010),而a数组的元素可能到5e5,所以可能需要将sum数组的大小调整为足够大,例如,如果a中的元素可能到5e5,那么sum数组的大小应至少为5e5+1。用户目前的sum数组是500010,这应该足够。 综上,修改这两个错误后,代码应该可以正确工作。 现在,总结需要修改的地方: 1. 在处理sum减少的情况时,调整cnt的加减符号。 例如,在: while(pl < b[i].l){ -- sum[a[pl]]; if(sum[a[pl]] == 1) { s[a[pl] / kuai_len] ++; cnt ++; } else if(sum[a[pl]] == 0) { s[a[pl] / kuai_len] --; cnt --; } ++ pl; } 和 while(pr > b[i].r){ -- sum[a[pr]]; if(sum[a[pr]] == 1) { s[a[pr]/kuai_len] ++; cnt ++; } else if(sum[a[pr]] == 0) { s[a[pr]/kuai_len] --; cnt --; } -- pr; } 以及其他类似的地方。 2. 修改js函数中的循环起始为i*kuai_len: 在js函数中: for(int i = 0; i <= 6000; ++i){ if(s[i]){ for(int j = i * kuai_len; ; ++j){ if(sum[j] == 1) return j; } } } 这里需要注意,如果i*kuai_len的值超过sum数组的大小,可能导致越界访问。例如,假设sum的大小是500010,而i*kuai_len可能超过这个值。因此,可能需要调整循环条件,或者在遍历时确保j不超过最大值。但根据莫队的维护方式,sum数组中的元素只有在当前区间内出现的元素才会被修改,而其他元素的sum值为0,所以即使j超过数组的大小,可能导致越界访问,触发运行时错误。因此,必须确保sum数组足够大,能够覆盖所有可能的a中的元素值。 用户当前的sum数组大小是500010,这可能足够,因为题目中的a[i]的范围可能到5e5。所以,如果a中的元素值超过5e5,会导致数组越界。因此,可能需要将sum数组的大小调整为更大的值,例如500010。或者,题目中的元素范围可能被限制在1到5e5,所以用户代码中的sum数组大小是足够的。 假设sum数组的大小足够,那么修改后的js函数将正确遍历对应的块中的元素。 综上,用户代码中的错误主要集中在: - 处理sum减少时的cnt和s数组的更新符号错误。 - js函数中的块起始位置错误。 修改这两个错误后,代码应该可以正确运行。</think>您的代码存在两个主要问题: 1. **维护出现次数时的逻辑错误** 在缩小区间时(`sum`减少),当元素出现次数变为1时,应将`cnt`增加而非减少;当次数变为0时,应将`cnt`减少而非增加。具体修改如下: ```cpp // 修改左指针右移时的逻辑 while(pl < b[i].l){ --sum[a[pl]]; if(sum[a[pl]] == 1) s[a[pl]/kuai_len]++, cnt++; // 此处cnt改为++ else if(sum[a[pl]] == 0) s[a[pl]/kuai_len]--, cnt--; // 此处cnt改为-- ++pl; } // 修改右指针左移时的逻辑 while(pr > b[i].r){ --sum[a[pr]]; if(sum[a[pr]] == 1) s[a[pr]/kuai_len]++, cnt++; // 同上 else if(sum[a[pr]] == 0) s[a[pr]/kuai_len]--, cnt--; // 同上 --pr; } ``` 2. **查询答案时块遍历错误** `js`函数中遍历块的起始位置计算错误,导致无法找到正确元素。应将起始位置改为`i * kuai_len`: ```cpp int js(){ if(cnt == 0) return 0; for(int i = 0; i <= 6000; ++i){ if(s[i]){ for(int j = i * kuai_len; ; ++j){ // 起始位置修正为i*kuai_len if(sum[j] == 1) return j; } } } return 0; // 安全返回 } ``` **完整修改后的代码:** ```cpp #include<bits/stdc++.h> using namespace std; int n, q, a[500010], bl[500010], kuai_len; struct node { int l, r, tim; friend bool operator <(node t1, node t2) { return bl[t1.l] == bl[t2.l] ? (t1.r == t2.r ? 0 : (bl[t1.l] & 1) ^ (t1.r < t2.r)) : bl[t1.l] < bl[t2.l]; } } b[500010]; int s[6010], sum[500010], ans[500010], cnt; int js() { if (cnt == 0) return 0; for (int i = 0; i <= 6000; ++i) { if (s[i]) { for (int j = i * kuai_len;; ++j) { // 起始位置修正 if (sum[j] == 1) return j; } } } return 0; } int main() { scanf("%d", &n); kuai_len = sqrt(n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); bl[i] = (i - 1) / kuai_len + 1; } scanf("%d", &q); for (int i = 1; i <= q; ++i) { scanf("%d %d", &b[i].l, &b[i].r); b[i].tim = i; } sort(b + 1, b + q + 1); int pl = 1, pr = 0; for (int i = 1; i <= q; ++i) { while (pl > b[i].l) { --pl; if (sum[a[pl]] == 1) s[a[pl]/kuai_len]--, cnt--; else if (sum[a[pl]] == 0) s[a[pl]/kuai_len]++, cnt++; sum[a[pl]]++; } while (pr < b[i].r) { ++pr; if (sum[a[pr]] == 1) s[a[pr]/kuai_len]--, cnt--; else if (sum[a[pr]] == 0) s[a[pr]/kuai_len]++, cnt++; sum[a[pr]]++; } while (pl < b[i].l) { sum[a[pl]]--; if (sum[a[pl]] == 1) s[a[pl]/kuai_len]++, cnt++; // 修正cnt else if (sum[a[pl]] == 0) s[a[pl]/kuai_len]--, cnt--; // 修正cnt ++pl; } while (pr > b[i].r) { sum[a[pr]]--; if (sum[a[pr]] == 1) s[a[pr]/kuai_len]++, cnt++; // 修正cnt else if (sum[a[pr]] == 0) s[a[pr]/kuai_len]--, cnt--; // 修正cnt --pr; } ans[b[i].tim] = js(); } for (int i = 1; i <= q; ++i) { printf("%d\n", ans[i]); } return 0; } ``` **修改说明:** 1. **维护`cnt`的逻辑修正**:在缩小范围时(`sum`减少),正确处理出现次数变化对`cnt`的影响。 2. **块遍历修正**:确保在`js`函数中正确遍历每个块内的元素。 3. **分块计算调整**:将`bl[i]`的计算方式改为标准分块方式,确保排序正确。 这些修改应能解决代码中的主要逻辑错误,使其正确找到仅出现一次的元素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值